This section describes network analyses and displays correlation structures in the data. Here, physical activity (PA) is used interchangeably with moderate-to-vigorous physical activity (MVPA); all measures of activity relate to MVPA.

Clicking the “Code”-buttons on the right shows code for each chunk.

\(~\) \(~\)

As with all models, network analysis entails its own set of assumptions. Due to the similarity with regression models, it does not make sense to include variables which can be thought to be embedded in each other. For example, it is difficult to argue that there is no conceptual overlap between positive outcome expectations and autonomous motivation. In this regard, behaviour change technique use and the quality of one’s motivation (as posited by self-determination theory) seem less problematic. Hence, we start with those.

Combined BCT chunks

The following network depicts a mixed graphical model, with the following variables:

  • Two measures of physical activity. MVPA accelerometer is the mean accelerometer-measured Moderate-to-Vigorous Physical Activity (MVPA) during a day in the measurement period, MVPA questionnaire is a survey item which asked “on how many days the previous week were you active for at least 30 minutes so, that you were out of breath”.

  • One Behaviour Change Technique usage node (BCT usage is the mean of all techniques participants reported having used).

  • Four motivation types (Intrinsic and Identified, which are facets of “autonomous regulation” according to the self-determination theory, looked normal so used as continuous. Introjected and Extrinsic - facets of “controlled regulation” - were heavily skewed, so they were dichotomised: if “at least partly” or more true, a participant gets 1, otherwise 0.


bctdf_mgm <- df %>% dplyr::select(
  'agr-BCTs' = PA_agreementDependentBCT_T1,
  'frq-BCTs' = PA_frequencyDependentBCT_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'Intrinsic' = PA_intrinsic_T1,
  'Identified' = PA_identified_T1,
  'Introjected' = PA_introjected_T1,
  'Extrinsic' = PA_extrinsic_T1) %>%
 rowwise() %>% 
 mutate(
  'BCT usage' = mean(c(`agr-BCTs`, `frq-BCTs`), na.rm = TRUE),
  # 'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
  'Extrinsic' = ifelse(`Extrinsic` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem. 
  'Introjected' = ifelse(`Introjected` < 3, 0, 1)) %>%  # If "at least partly" or more true, input 1. Normality otherwise a problem. 
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', 'BCT usage', everything(), -contains("-BCTs")) %>% 
  mutate_all(as.numeric)

bctdf_mgm$`BCT usage`[is.nan(bctdf_mgm$`BCT usage`)] <- NA



# If you need mock data:
# bctdf_mgm <- data.frame(
#   'MVPA questionnaire' = sample(1:8, size = 700, replace = TRUE),
#   'MVPA accelerometer' = rnorm(mean = 130, sd = 40, n = 700),
#   'BCT usage' = replicate(19, sample(1:5, 700, rep = TRUE)) %>% as.data.frame() %>% rowMeans(.),
#   'Intrinsic' = replicate(3, sample(1:5, 700, rep = TRUE)) %>% as.data.frame() %>% rowMeans(.),
#   'Identified' = replicate(3, sample(1:5, 700, rep = TRUE)) %>% as.data.frame() %>% rowMeans(.),
#   'Introjected' = sample(0:1, 700, rep = TRUE) %>% as.data.frame() %>% rowMeans(.),
#   'Extrinsic' = sample(0:1, 700, rep = TRUE) %>% as.data.frame() %>% rowMeans(.)
# )

labs <- names(bctdf_mgm)

# mgm wants full data, see package missForest for imputation methods
bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c(rep("g", 5), "c", "c")
mgm_variable_levels <- c(rep("1", 5), "2", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

The bootstrap stability plot above shows the proportion of re-samples, which contain a non-zero link between two edges (for a tutorial, see this link – or, if it’s down, this archived page). For example, when we draw observations from the current sample with replacement a 100 times, 99% of these times a non-zero link between questionnaire-measured MVPA and intrinsic motivation is estimated.

Correlation network and mixed graphical model compared

## Note that the sign of parameter estimates is stored separately; see ?mgm
A) Mixed graphical model with LASSO regularisation and model selection by cross-validation. Pie indicates node predictability. B) Bivariate correlation network. Pie indicates node mean as % of theoretical maximum (for MVPA accelerometer, mean as % maximum observed MVPA).

  1. Mixed graphical model with LASSO regularisation and model selection by cross-validation. Pie indicates node predictability. B) Bivariate correlation network. Pie indicates node mean as % of theoretical maximum (for MVPA accelerometer, mean as % maximum observed MVPA).

The “last motivation type”, i.e. the fifth, is Amotivation (dichotomised due to skew). A node for that is added in the network below:


bctdf_mgm <- df %>% dplyr::select(
  'agr-BCTs' = PA_agreementDependentBCT_T1,
  'frq-BCTs' = PA_frequencyDependentBCT_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'Intrinsic' = PA_intrinsic_T1,
  'Identified' = PA_identified_T1,
  'Introjected' = PA_introjected_T1,
  'Extrinsic' = PA_extrinsic_T1,
  'Amotivation' = PA_amotivation_T1) %>%
 rowwise() %>% 
 mutate(
  'BCT usage' = mean(c(`agr-BCTs`, `frq-BCTs`), na.rm = TRUE),
  # 'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
  'Extrinsic' = ifelse(`Extrinsic` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'Amotivation' = ifelse(`Amotivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'Introjected' = ifelse(`Introjected` < 3, 0, 1)) %>%  # If "at least partly" or more true, input 1. Normality otherwise a problem. 
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', 'BCT usage', everything(), -contains("-BCTs")) %>% 
  mutate_all(as.numeric)

bctdf_mgm$`BCT usage`[is.nan(bctdf_mgm$`BCT usage`)] <- NA

labs <- names(bctdf_mgm)

# mgm wants full data, see package missForest for imputation methods
bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c(rep("g", 5), "c", "c", "c")
mgm_variable_levels <- c(rep("1", 5), "2", "2", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Theory-wise, Amotivation should be negatively correlated with everything but Extrinsic and Introjected. Given that BCT usage is 19 items, there are probably a lot of ways there can be a positive correlation, although that would be unexpected. But the positive relation with MVPA questionnaire would mean, that people who report having done physical activity on more days last week, would also say they don’t see any point in doing physical activity (another example item: I think exercising is a waste of time). One explanation would be some form of conditioning on a collider.

One option would be, that (as the model drops incomplete observations), there is some selection effects based on motivation types and/or BCT usage. To check for this, we estimate a Gaussian Graphical Model, which assumes normally distributed data but uses all observations.

bctdf_ggm <- df %>% dplyr::select(
  'agr-BCTs' = PA_agreementDependentBCT_T1,
  'frq-BCTs' = PA_frequencyDependentBCT_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'Intrinsic' = PA_intrinsic_T1,
  'Identified' = PA_identified_T1,
  'Introjected' = PA_introjected_T1,
  'Extrinsic' = PA_extrinsic_T1,
  'Amotivation' = PA_amotivation_T1) %>%
 rowwise() %>% 
 mutate(
  'BCT usage' = mean(c(`agr-BCTs`, `frq-BCTs`), na.rm = TRUE),
  # 'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
  'Extrinsic' = ifelse(`Extrinsic` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'Amotivation' = ifelse(`Amotivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'Introjected' = ifelse(`Introjected` < 3, 0, 1)) %>%  # If "at least partly" or more true, input 1. Normality otherwise a problem. 
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', 'BCT usage', everything(), -contains("-BCTs")) %>% 
  mutate_all(as.numeric)

bctdf_ggm$`BCT usage`[is.nan(bctdf_ggm$`BCT usage`)] <- NA

# Network for all participants
S.total_ggm <- bctdf_ggm
nwBCT_ggm <- bootnet::estimateNetwork(S.total_ggm, default="ggmModSelect")

labs_ggm <- colnames(S.total_ggm)

# Create means for filling nodes
# piefill_ggm <- S.total_ggm %>% 
#   dplyr::select(-contains("MVPA"), -contains("motivation")) %>% data.frame %>% 
#   dplyr::summarise_all(funs(mean(., na.rm = TRUE) /6))
# 
# piefill_ggm$`MVPA accelerometer` <- median(S.total_ggm$`MVPA accelerometer`, na.rm = TRUE) / (60 * 24)
# piefill_ggm$`MVPA questionnaire` <- median(S.total_ggm$`MVPA questionnaire`, na.rm = TRUE) / 7
# piefill_ggm$autonomous <- median(S.total_ggm$`autonomous motivation`, na.rm = TRUE) / 5
# piefill_ggm$controlled <- median(S.total_ggm$`controlled motivation`, na.rm = TRUE) / 5
#   
# piefill_ggm <- piefill_ggm %>% 
#   dplyr::select("MVPA questionnaire", "MVPA accelerometer", autonomous, controlled, everything())

# Plot network

BCT_ggm <- plot(nwBCT_ggm, 
                layout = "spring", 
                repulsion = 0.99, # To nudge the network from originally bad visual state
                label.scale = FALSE, 
                title = "GGM: MVPA, BCTs & motivation", 
                label.cex = 0.75,
                # pie = piefill_ggm,
                color = "skyblue",
                pieBorder = 1)

From the network above, we see that the positive connection between amotivation and questionnaire-measured MVPA has almost completely disappered. Bootstrapping to inspect stability shows, that the connection is likely to be zero (see 13th edge from the bottom; “MVPA questionnaire–Amotivation”).

The bootstrap stability plot above (for a tutorial, see this link – or, if it’s down, this archived page) shows, that when we draw observations from the sample with replacement 2500 times, the connection between amotivation and questionnaire-measured MVPA was estimated as non-zero only about 30% of time.

Combining some BCT items

This section presents a Mixed Graphical Model (MGM) and a Gaussian Graphical Model (GGM). In the MGM, we opted to dichotomise the BCTs in order to increase interpretability while not violating model assumptions. Results do not differ very much. Some nodes were still combined, to reduce estimation burden.

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 mutate(
  'goal setting' = ifelse(`goal setting` == 1, 0, 1),
#  'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  'own plan' = ifelse(`own plan` == 1, 0, 1),
  'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
#  'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
#  'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
#  'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
#  'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
#  'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  'social support' = ifelse(`social support` == 1, 0, 1),
  'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = T),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1)) %>%  # If "at least partly" or more true, input 1. Normality otherwise a problem. 
#  'intervention' = ifelse(intervention == "1", 1, 0)) %>% 
  dplyr::select(-`self-monitor (paper)`, -`self-monitor (app)`, 
                # -`plan by other`, -`own plan`, 
                -identified, -intrinsic,
         -`analysing goal failure`, # only concerns those who haven't reached goals
         -`barrier identification`, -`problem solving`, # closely related
         -`PA identity reflection`, -`aligning PA with life values`) %>% # closely related
#  dplyr::select(-controlled) %>% # Not really gaussian at all 
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything())

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

mgm estimation

ggm estimation & plotting


bctdf_ggm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 mutate(
#  'has plan' = mean(c(`own plan`, `plan by other`), na.rm = TRUE),
  'barriers identified or planned for' = mean(c(`problem solving`, `barrier identification`), na.rm = TRUE),
  'identity, life values' = mean(c(`PA identity reflection` == 1, `aligning PA with life values`), na.rm = TRUE),
  'monitoring PA' = mean(c(`self-monitor (paper)`, `self-monitor (app)`), na.rm = TRUE),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = T)) %>% 
#  'girl' = ifelse(girl == "girl", 1, 0),
#  'intervention' = ifelse(intervention == "1", 1, 0)) %>% 
  dplyr::select(-`self-monitor (paper)`, -`self-monitor (app)`, 
#                -`plan by other`, -`own plan`,
                -identified, -intrinsic,
         -`failure contemplated`, # only concerns those who haven't reached goals
         -`barrier identification`, -`problem solving`, # closely related
         -`PA identity reflection`, -`aligning PA with life values`) %>% # closely related
#  dplyr::select(-controlled) %>% # Not really gaussian at all 
  dplyr::select("MVPA questionnaire", "MVPA accelerometer", "autonomous motivation", "controlled motivation", everything()) %>% 
  dplyr::mutate_all(as.numeric)

# Network for all participants
S.total_ggm <- bctdf_ggm
nwBCT_ggm <- bootnet::estimateNetwork(S.total_ggm, default="ggmModSelect")

labs_ggm <- colnames(S.total_ggm)

# Create means for filling nodes
piefill_ggm <- S.total_ggm %>% 
  dplyr::select(-contains("MVPA"), -contains("motivation")) %>% data.frame %>% 
  dplyr::summarise_all(funs(mean(., na.rm = TRUE) /6))

piefill_ggm$`MVPA accelerometer` <- median(S.total_ggm$`MVPA accelerometer`, na.rm = TRUE) / (60 * 24)
piefill_ggm$`MVPA questionnaire` <- median(S.total_ggm$`MVPA questionnaire`, na.rm = TRUE) / 7
piefill_ggm$autonomous <- median(S.total_ggm$`autonomous motivation`, na.rm = TRUE) / 5
piefill_ggm$controlled <- median(S.total_ggm$`controlled motivation`, na.rm = TRUE) / 5
  
piefill_ggm <- piefill_ggm %>% 
  dplyr::select("MVPA questionnaire", "MVPA accelerometer", autonomous, controlled, everything())

# Plot network

BCT_ggm <- plot(nwBCT_ggm, 
                layout = "spring", 
                repulsion = 0.99, # To nudge the network from originally bad visual state
                label.scale = FALSE, 
                title = "GGM: MVPA, BCTs & motivation", 
                label.cex = 0.75,
                pie = piefill_ggm,
                color = "skyblue",
                pieBorder = 1)

Centrality and stability


qgraph::centrality(allBctsMotiSurveyPA)$InDegree %>% 
  data.frame("Node" = names(.), "Strength" = .) %>%
  dplyr::arrange(desc(Strength)) %>% 
  papaja::apa_table()
## <caption>(\#tab:allBctsMotiSurveyPA-ggm-stability)</caption>
## 
## <caption>**</caption>
## 
## 
## 
## Node                                 Strength 
## -----------------------------------  ---------
## personal relevance reflection        1.47     
## reminder of plan                     1.37     
## goal setting                         1.37     
## environmental changes (home)         1.33     
## goal review                          1.21     
## autonomous motivation                1.13     
## own plan                             1.13     
## barriers identified or planned for   1.09     
## subgoals                             1.04     
## identity, life values                0.98     
## plan by other                        0.96     
## trying new PA                        0.94     
## social support                       0.93     
## remind of PA benefits                0.87     
## MVPA questionnaire                   0.86     
## monitoring PA                        0.85     
## controlled motivation                0.36     
## MVPA accelerometer                   0.30

scale(qgraph::centrality(allBctsMotiSurveyPA)$InDegree) %>% 
  data.frame(Node = labels(.), `Standardised strength` = .) %>%
  plyr::arrange(desc(`Standardised.strength`)) %>% 
  papaja::apa_table()
## <caption>(\#tab:allBctsMotiSurveyPA-ggm-stability)</caption>
## 
## <caption>**</caption>
## 
## 
## 
## Node.c..MVPA.questionnaire....MVPA.accelerometer....autonomous.motivation...   Node..1.   Standardised.strength 
## -----------------------------------------------------------------------------  ---------  ----------------------
## personal relevance reflection                                                  1          1.48                  
## reminder of plan                                                               1          1.15                  
## goal setting                                                                   1          1.14                  
## environmental changes (home)                                                   1          1.02                  
## goal review                                                                    1          0.64                  
## autonomous motivation                                                          1          0.39                  
## own plan                                                                       1          0.37                  
## barriers identified or planned for                                             1          0.25                  
## subgoals                                                                       1          0.08                  
## identity, life values                                                          1          -0.08                 
## plan by other                                                                  1          -0.17                 
## trying new PA                                                                  1          -0.21                 
## social support                                                                 1          -0.25                 
## remind of PA benefits                                                          1          -0.45                 
## MVPA questionnaire                                                             1          -0.49                 
## monitoring PA                                                                  1          -0.51                 
## controlled motivation                                                          1          -2.08                 
## MVPA accelerometer                                                             1          -2.28
  
qgraph::centrality(allBctsMotiSurveyPA)$Closeness %>% data.frame(Closeness = .) %>% papaja::apa_table()
## <caption>(\#tab:allBctsMotiSurveyPA-ggm-stability)</caption>
## 
## <caption>**</caption>
## 
## 
## 
##                                      Closeness 
## -----------------------------------  ----------
## MVPA questionnaire                   0.01      
## MVPA accelerometer                   0.00      
## autonomous motivation                0.01      
## controlled motivation                0.00      
## goal setting                         0.01      
## own plan                             0.01      
## plan by other                        0.01      
## reminder of plan                     0.01      
## subgoals                             0.01      
## trying new PA                        0.01      
## remind of PA benefits                0.01      
## goal review                          0.01      
## personal relevance reflection        0.01      
## environmental changes (home)         0.01      
## social support                       0.01      
## barriers identified or planned for   0.01      
## identity, life values                0.01      
## monitoring PA                        0.01

qgraph::centrality(allBctsMotiSurveyPA)$Betweenness %>% data.frame(names(.), .) %>% papaja::apa_table()
## <caption>(\#tab:allBctsMotiSurveyPA-ggm-stability)</caption>
## 
## <caption>**</caption>
## 
## 
## 
##                                      names...                             .     
## -----------------------------------  -----------------------------------  ------
## MVPA questionnaire                   MVPA questionnaire                   34.00 
## MVPA accelerometer                   MVPA accelerometer                   0.00  
## autonomous motivation                autonomous motivation                24.00 
## controlled motivation                controlled motivation                2.00  
## goal setting                         goal setting                         14.00 
## own plan                             own plan                             18.00 
## plan by other                        plan by other                        16.00 
## reminder of plan                     reminder of plan                     32.00 
## subgoals                             subgoals                             10.00 
## trying new PA                        trying new PA                        4.00  
## remind of PA benefits                remind of PA benefits                6.00  
## goal review                          goal review                          10.00 
## personal relevance reflection        personal relevance reflection        34.00 
## environmental changes (home)         environmental changes (home)         34.00 
## social support                       social support                       18.00 
## barriers identified or planned for   barriers identified or planned for   16.00 
## identity, life values                identity, life values                6.00  
## monitoring PA                        monitoring PA                        10.00

cor(qgraph::centrality(allBctsMotiSurveyPA)$InDegree, qgraph::centrality(allBctsMotiSurveyPA)$Betweenness, 
    method = "spearman") 
## [1] 0.5978302

# bootnet_stability_allBctsMotiSurveyPA <- bootnet::bootnet(allBctsMotiSurveyPA, nBoots=1000)
# save(bootnet_stability_allBctsMotiSurveyPA, file = "./Rdata_files/bootnet_stability_allBctsMotiSurveyPA.Rdata")
load("./Rdata_files/bootnet_stability_allBctsMotiSurveyPA.Rdata")

plot(bootnet_stability_allBctsMotiSurveyPA, labels = FALSE, order = "sample") 

Correlation matrix visualised


bivariate_BCTs <- df %>% dplyr::select(
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1,
  'PA accelerometer' = mvpaAccelerometer_T1,
  'PA self-report' = padaysLastweek_T1,
  'autonomous' = PA_autonomous_T1,
  'controlled' = PA_controlled_T1) %>%
 rowwise() %>% 
  dplyr::select(`PA accelerometer`, `PA self-report`, autonomous, controlled, everything()) %>% 
  mutate_all(as.numeric)

# Create a covariance matrix of the data
covMatrix <- bctdf_ggm %>% cov(use = "pairwise.complete.obs")

# Transform the matrix so, that lower diagonal of the matrix shows partial correlations,
# while the upper one shows bivariate correlations.
matrix_corLower_parcorUpper <- covMatrix %>% ggm::correlations()

# Show the matrix
matrix_corLower_parcorUpper %>% papaja::apa_table(caption = "Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations")
(#tab:allBctsMotiSurveyPA-corrmatrix) Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations
MVPA questionnaire MVPA accelerometer autonomous motivation controlled motivation goal setting own plan plan by other reminder of plan subgoals trying new PA remind of PA benefits goal review personal relevance reflection environmental changes (home) social support barriers identified or planned for identity, life values monitoring PA
MVPA questionnaire 1.00 0.19 0.19 -0.02 0.02 0.03 0.15 -0.05 0.07 0.10 0.00 0.05 0.02 -0.01 0.01 -0.06 -0.02 0.08
MVPA accelerometer 0.29 1.00 0.06 -0.04 0.06 -0.08 0.07 -0.02 0.02 0.05 0.02 0.03 -0.03 0.04 0.03 -0.06 0.04 -0.04
autonomous motivation 0.43 0.21 1.00 0.02 0.15 0.07 0.08 -0.04 -0.01 0.10 0.14 0.01 0.16 -0.07 -0.04 -0.02 0.16 0.00
controlled motivation 0.05 -0.02 0.12 1.00 -0.01 0.03 0.01 0.05 0.01 -0.02 0.07 -0.03 0.02 0.02 0.11 0.10 -0.09 -0.01
goal setting 0.35 0.17 0.54 0.14 1.00 0.49 -0.01 -0.01 0.06 0.00 0.14 0.05 -0.01 -0.04 0.07 0.09 0.05 -0.06
own plan 0.36 0.12 0.51 0.16 0.74 1.00 0.13 0.15 0.11 0.05 -0.03 0.07 -0.01 0.01 0.00 0.03 0.07 -0.02
plan by other 0.37 0.18 0.37 0.11 0.40 0.48 1.00 0.19 0.12 -0.03 -0.07 0.00 0.02 0.03 0.02 -0.03 0.03 0.03
reminder of plan 0.29 0.10 0.35 0.17 0.47 0.57 0.50 1.00 0.26 0.05 -0.02 0.11 -0.04 -0.01 -0.03 0.10 0.03 0.27
subgoals 0.36 0.15 0.42 0.15 0.54 0.60 0.48 0.64 1.00 0.12 -0.02 0.04 -0.01 0.01 0.01 0.19 0.06 0.04
trying new PA 0.37 0.17 0.46 0.11 0.47 0.51 0.35 0.47 0.54 1.00 -0.06 0.09 0.04 0.08 0.01 0.17 0.14 0.00
remind of PA benefits 0.27 0.13 0.47 0.18 0.47 0.40 0.23 0.31 0.35 0.34 1.00 0.05 0.34 0.00 0.09 0.06 0.04 0.04
goal review 0.36 0.16 0.43 0.14 0.50 0.53 0.39 0.55 0.53 0.50 0.46 1.00 0.21 0.09 0.09 0.04 -0.01 0.25
personal relevance reflection 0.33 0.14 0.53 0.17 0.49 0.47 0.33 0.40 0.44 0.47 0.62 0.58 1.00 0.12 0.11 0.08 0.17 -0.04
environmental changes (home) 0.24 0.12 0.25 0.16 0.31 0.34 0.30 0.39 0.38 0.38 0.34 0.50 0.45 1.00 0.33 -0.01 0.02 0.27
social support 0.24 0.12 0.30 0.22 0.38 0.37 0.29 0.35 0.37 0.35 0.41 0.48 0.48 0.56 1.00 0.04 -0.02 0.05
barriers identified or planned for 0.27 0.09 0.43 0.20 0.54 0.55 0.37 0.54 0.60 0.56 0.44 0.52 0.53 0.37 0.40 1.00 0.25 0.04
identity, life values 0.30 0.16 0.52 0.08 0.53 0.53 0.36 0.43 0.50 0.52 0.43 0.45 0.55 0.32 0.33 0.60 1.00 -0.10
monitoring PA 0.29 0.08 0.27 0.13 0.31 0.37 0.36 0.55 0.45 0.37 0.31 0.57 0.37 0.53 0.41 0.40 0.27 1.00

(#tab:allBctsMotiSurveyPA-corrmatrix) Bivariate correlations between BCTs, motivation and self-reported PA. Sorted by strength.
Var1 Var2 Spearman correlation
PA accelerometer PA accelerometer 1.00
PA accelerometer PA self-report 0.28
PA accelerometer autonomous 0.25
PA accelerometer trying new PA 0.18
PA accelerometer goal setting 0.17
PA accelerometer aligning PA with life values 0.16
PA accelerometer plan by other 0.16
PA accelerometer goal review 0.15
PA accelerometer subgoals 0.14
PA accelerometer social support 0.13
PA accelerometer personal relevance reflection 0.13
PA accelerometer PA identity reflection 0.13
PA accelerometer remind of PA benefits 0.12
PA accelerometer own plan 0.11
PA accelerometer environmental changes (home) 0.11
PA accelerometer failure contemplated 0.10
PA accelerometer self-monitor (paper) 0.09
PA accelerometer reminder of plan 0.09
PA accelerometer barrier identification 0.08
PA accelerometer memory cues 0.08
PA accelerometer problem solving 0.06
PA accelerometer self-monitor (app) 0.04
PA accelerometer controlled -0.03

Cognitive BCTs only, added one at a time

Four BCTs can be categorised as being completely cognitive, i.e. not being observable to an outsider. These are (in order of correlation with accelerometer-measured MVPA:

  1. I have attempted to find ways to exercise so, that it won’t obstruct but instead helps actualise my other life values.
  2. I have thought about which reasons to do PA are important to me personally.
  3. I have reminded myself even in my spare time, what kind of positive consequences frequent PA would have in my life.
  4. I have thought about how PA fits my identity (self concept).

First, we fit a model with only the first one:

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 # 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  # 'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  # 'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything())

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", rep("c", 1), "g", "c")
mgm_variable_levels <- c("1", "1", rep("2", 1), "1", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Adding the second (I have thought about which reasons to do PA are important to me personally):

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 # 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  # 'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything())

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", rep("c", 2), "g", "c")
mgm_variable_levels <- c("1", "1", rep("2", 2), "1", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Adding the third (I have reminded myself even in my spare time, what kind of positive consequences frequent PA would have in my life):

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 # 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything())

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", rep("c", 3), "g", "c")
mgm_variable_levels <- c("1", "1", rep("2", 3), "1", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Adding the fourth (I have thought about how PA fits my identity (self concept)):

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything())

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", rep("c", 4), "g", "c")
mgm_variable_levels <- c("1", "1", rep("2", 4), "1", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Next: Removing motivation items makes the negative connection between positive consequences and MVPA questionnaire disappear (see following plot). One explanation would be conditioning on a collider: if both physical activity and thinking about its positive consequences lead to autonomous motivation, this creates a spurious negative link between the two antecedents.

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'MVPA accelerometer', everything()) %>% 
  dplyr::select(-'autonomous motivation', -'controlled motivation')

# bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", rep("c", 4))
mgm_variable_levels <- c("1", "1", rep("2", 4))
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Keeping only the three items showing a presumable conditioning on a collider effect, does not lend support for the simple collider hypothesis with these variables.

bctdf_mgm <- df %>% dplyr::select(
#  id,
#  intervention,
#  group,
#  school,
#  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1, # Issues with clarity of item wording 
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'analysing goal failure' = PA_frequencyDependentBCT_09_T1,
  'MVPA questionnaire' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1,
  'intrinsic' = PA_intrinsic_T1,
  'identified' = PA_identified_T1,
  'controlled motivation' = PA_controlled_T1) %>%
 rowwise() %>% 
 dplyr::transmute(
  # 'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  # 'has plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  # 'own plan' = ifelse(`own plan` == 1, 0, 1),
  # 'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  # 'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  # 'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  # 'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  # 'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  # 'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  # 'barriers identified or planned for' = ifelse(`problem solving` == 1 & `barrier identification` == 1, 0, 1),
 # 'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
 'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  # 'identity, life values' = ifelse(`PA identity reflection` == 1 & `aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  # 'monitoring PA' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
  # 'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  # 'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  # 'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  # 'social support' = ifelse(`social support` == 1, 0, 1),
  # 'analysing goal failure' = ifelse(`analysing goal failure` == 1, 0, 1),
  'autonomous motivation' = mean(c(identified, intrinsic), na.rm = TRUE),
#  'girl' = ifelse(girl == "girl", 1, 0),
  'controlled motivation' = ifelse(`controlled motivation` < 3, 0, 1), # If "at least partly" or more true, input 1. Normality otherwise a problem.
  'MVPA questionnaire' = `MVPA questionnaire` * 1, 
  'MVPA accelerometer' = `MVPA accelerometer` * 1) %>%  
  dplyr::select('MVPA questionnaire', 'autonomous motivation', 'remind of PA benefits')

bctdf_mgm$`autonomous motivation`[is.nan(bctdf_mgm$`autonomous motivation`)] <- NA

labs <- names(bctdf_mgm)

bctdf_mgm <- bctdf_mgm %>% na.omit(.)
# bctdf_mgm %>% names()
mgm_variable_types <- c("g", "g", "c")
mgm_variable_levels <- c("1", "1", "2")
# data.frame(mgm_variable_types, mgm_variable_levels, names(bctdf_mgm))

mgm_obj <- mgm::mgm(data = bctdf_mgm,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = bctdf_mgm)

pred_obj$errors

Environmental variables (group, opportunities)

Environmental opportunities include having enough money to be physically active, biking and hiking tracks in one’s environment, needed PA equipment (gear), facilities for being physically active (such as sports halls/centres, gyms) nearby, not feeling like lack of PA gear is an obstackle for being active, not being too busy with school, hobbies and/or friends, having good opportunities to be active at home, and not feeling like one’s family or religion restricts their activity.

environmentdf_mgm_T1 <- df %>% 
  dplyr::select('group feels safe' = groupFeelsSafe_T1,
  'group listens to me' = groupListensToMe_T1,
  'group supports me' = groupSupportsMe_T1,
  'group understands me' = groupUnderstandsMe_T1,
  'group values me' = groupValuesMe_T1,
  "enough money" = PA_opportunities_01_T1,
  "biking and hiking tracks" = PA_opportunities_02_T1,
  "has PA gear" = PA_opportunitiesReverseCoded_03_T1,
  "facilities (e.g. gyms)" = PA_opportunities_04_T1,
  "PA gear no obstacle" = PA_opportunities_05_T1,
  "life not too busy" = PA_opportunitiesReverseCoded_06_T1,
  "opportunities at home" = PA_opportunities_07_T1,  
  "religion or family" = PA_opportunitiesReverseCoded_08_T1,
  'MVPA survey' = padaysLastweek_T1,
  'MVPA accelerometer' = mvpaAccelerometer_T1) %>% 
 rowwise() %>% 
 mutate("religion or family" = ifelse(`religion or family` < 7, 0, 1)) %>% # highly skewed, so dichotomised
  dplyr::select('MVPA survey', 'MVPA accelerometer', everything())

labs <- names(environmentdf_mgm_T1)

# mgm wants full data, see package missForest for imputation methods
environmentdf_mgm_T1 <- environmentdf_mgm_T1 %>% na.omit(.)
# environmentdf_mgm %>% names()
mgm_variable_types <- c(rep("g", 14), rep("c", 1))
mgm_variable_levels <- c(rep("1", 14), rep("2", 1))
# data.frame(mgm_variable_types, mgm_variable_levels, names(environmentdf_mgm))

mgm_obj_T1 <- mgm::mgm(data = environmentdf_mgm_T1,
  type = mgm_variable_types,
  level = mgm_variable_levels,
  lambdaSel = "EBIC",
  # lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

# Node pies:
# pies_T1 <- environmentdf_mgm_T1 %>% 
#   dplyr::summarise_all(~mean(., na.rm = TRUE)) # results in a series of means, which is ok for dichotomous vars
# pies_T1[1] <- pies_T1[1] / 7
# pies_T1[2] <- pies_T1[2] / max(environmentdf_mgm_T1$`MVPA accelerometer`, na.rm = TRUE)
# pies_T1[20] <- pies_T1[20] / 5


node_colors <- c(viridis::viridis(3, begin = 0.4, end = 0.99)[1], # Color 1 for MVPA (questionnaire)
                 viridis::viridis(3, begin = 0.4, end = 0.99)[1], # Color 1 for MVPA (accelerometer)
                 rep(viridis::viridis(3, begin = 0.4, end = 0.99)[2], 5), # 5x Color 2 for group-variables
                 rep(viridis::viridis(3, begin = 0.4, end = 0.99)[3], 8)) # Color 3 for opportunities  

# environment_mgm_T1 <- qgraph::qgraph(mgm_obj_T1$pairwise$wadj, 
#             layout = "spring",
#             repulsion = 0.99, # To nudge the network from originally bad visual state
#             edge.color = ifelse(mgm_obj_T1$pairwise$edgecolor == "darkgreen", "blue", mgm_obj_T1$pairwise$edgecolor),
#             # pie = pies_T1,
#             # pieColor = pie_colors_T1,
#             pieColor = node_colors,
#             labels = names(environmentdf_mgm_T1),
#             # pieBorder = 1,
#             label.cex = 0.75,
#             cut = 0,
#             edge.labels = TRUE,
#             label.scale = FALSE)

environment_mgm_T1_circle <- qgraph::qgraph(mgm_obj_T1$pairwise$wadj, 
            layout = "circle",
            title = "Mixed graphical model: PA, group environment & opportunities",
            edge.color = ifelse(mgm_obj_T1$pairwise$edgecolor == "darkgreen", "blue", mgm_obj_T1$pairwise$edgecolor),
            # pie = pies_T1,
            # pieColor = viridis::viridis(5, begin = 0.3, end = 0.8)[5],
            color = node_colors,
            labels = names(environmentdf_mgm_T1),
            label.cex = 0.75,
            cut = 0,
            label.scale = FALSE)

Exercise types

The first network is an Ising model with all participants.


# Roller skating has only 8 observations; leave out
exerciseTypes_df <- exerciseTypes_df %>% dplyr::select(-`Roller skating`)

# Variable types are muddled, change all to numeric
exerciseTypes_df <- as.data.frame(purrr::map(exerciseTypes_df, `class<-`, c("numeric"))) 

# Change data frame to type tbl to allow for spaces
exerciseTypes_df <- as.tbl(exerciseTypes_df)

# Take all names, replace the dots with space
names(exerciseTypes_df) <- stringr::str_replace_all(names(exerciseTypes_df), pattern = "\\.", replacement = " ")

exerciseTypes_network <- bootnet::estimateNetwork(exerciseTypes_df, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=====                                                            |   8%
  |                                                                       
  |==========                                                       |  15%
  |                                                                       
  |===============                                                  |  23%
  |                                                                       
  |====================                                             |  31%
  |                                                                       
  |=========================                                        |  38%
  |                                                                       
  |==============================                                   |  46%
  |                                                                       
  |===================================                              |  54%
  |                                                                       
  |========================================                         |  62%
  |                                                                       
  |=============================================                    |  69%
  |                                                                       
  |==================================================               |  77%
  |                                                                       
  |=======================================================          |  85%
  |                                                                       
  |============================================================     |  92%
  |                                                                       
  |=================================================================| 100%

# Create means for filling nodes
piefill <- exerciseTypes_df %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

# Plot network
exerciseTypes_ising <- plot(
  exerciseTypes_network, 
  layout = "spring", 
  label.scale = FALSE, 
  title = "Ising fit: self-reported exercise types", 
  # label.cex = 0.75,
  pie = piefill, 
  color = "skyblue",
  pieBorder = 1)

Same network, but estimated with mgm:


exerciseTypes_df <- lmi %>% select(Kys0051.1:Kys0064.1) %>% 
  dplyr::select(contains(".1")) %>% 
  dplyr::mutate_all(funs(replace_na(., 0)))
# exerciseTypes_df$track <- df$track
# exerciseTypes_df$girl <- df$girl
# exerciseTypes_df$`PA accelerometer` <- df$mvpaAccelerometer_T1
# exerciseTypes_df$`PA self-report` <- df$padaysLastweek_T1

names(exerciseTypes_df) <- c("Team ball games", 
                             "Other ball games",
                             "Gym training",
                             "Combat sports",
                             "Fitness classes",
                             "Home workout",
                             "Cycling",
                             "Swimming",
                             "Walking",
                             "Running",
                             "Skiing",
                             "Roller skating",
                             "Horseback riding",
                             "Other"
                             # "PA accelerometer",
                             # "PA self-report"
                             )

# Roller skating has only 8 observations; leave out
exerciseTypes_df <- exerciseTypes_df %>% dplyr::select(-`Roller skating`)

# Variable types are muddled, change all to numeric
exerciseTypes_df <- as.data.frame(purrr::map(exerciseTypes_df, `class<-`, c("numeric"))) 

# Change data frame to type tbl to allow for spaces
exerciseTypes_df <- as.tbl(exerciseTypes_df)

# Take all names, replace the dots with space
names(exerciseTypes_df) <- stringr::str_replace_all(names(exerciseTypes_df), pattern = "\\.", replacement = " ")

# Remove incomplete cases
exerciseTypes_df_fullobs <- exerciseTypes_df %>% na.omit()

# Tell mgm, that the first 14 variables are categorical and the last two are gaussian
exerciseTypes_df_variable_types <- c(rep("c", 13))
exerciseTypes_df_variable_levels <- c(rep("2", 13))
# data.frame(exerciseTypes_df_variable_types, exerciseTypes_df_variable_levels, names(exerciseTypes_df))

mgm_obj <- mgm::mgm(data = exerciseTypes_df_fullobs,
  type = exerciseTypes_df_variable_types,
  level = exerciseTypes_df_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj,
                         data = exerciseTypes_df_fullobs)

# pred_obj$errors

# Take R2 from gaussian, CC from categorical variables 
pie_errors <- c(pred_obj$errors[1:13, 4])

# Define node colors
node_colors <- c(rep(viridis::viridis(3, begin = 0.4, end = 0.95)[1], 13))

exerciseTypes_mgm <- qgraph::qgraph(mgm_obj$pairwise$wadj, 
            layout = "spring",
            repulsion = 0.999, # To nudge the network from originally bad visual state
            title = "Mixed graphical model: Types of reported physical activity",
            edge.color = ifelse(mgm_obj$pairwise$edgecolor == "darkgreen", "blue", mgm_obj$pairwise$edgecolor),
            pie = pie_errors,
            pieColor = viridis::viridis(3, begin = 0.4, end = 0.95)[2],
            color = node_colors,
            labels = names(exerciseTypes_df_fullobs),
            label.cex = 0.75,
            label.scale = FALSE,
            label.color = c(rep("black", 13)))

Below, we average the layout and plot these networks side-by-side for comparison.

Graph below includes the moderate-to-vigorous physical activity measures, and shows a mixed graphical model with model selection done by cross-validation.


exerciseTypes_df <- lmi %>% select(Kys0051.1:Kys0064.1) %>% 
  dplyr::select(contains(".1")) %>% 
  dplyr::mutate_all(funs(replace_na(., 0)))
# exerciseTypes_df$track <- df$track
# exerciseTypes_df$girl <- df$girl
exerciseTypes_df$`PA accelerometer` <- df$mvpaAccelerometer_T1
exerciseTypes_df$`PA self-report` <- df$padaysLastweek_T1

names(exerciseTypes_df) <- c("Team ball games", 
                             "Other ball games",
                             "Gym training",
                             "Combat sports",
                             "Fitness classes",
                             "Home workout",
                             "Cycling",
                             "Swimming",
                             "Walking",
                             "Running",
                             "Skiing",
                             "Roller skating",
                             "Horseback riding",
                             "Other",
                             "PA accelerometer",
                             "PA self-report"
                             )

# Roller skating has only 8 observations; leave out
exerciseTypes_df <- exerciseTypes_df %>% dplyr::select(-`Roller skating`)

# Variable types are muddled, change all to numeric
exerciseTypes_df <- as.data.frame(purrr::map(exerciseTypes_df, `class<-`, c("numeric"))) 

# Change data frame to type tbl to allow for spaces
exerciseTypes_df <- as.tbl(exerciseTypes_df)

# Take all names, replace the dots with space
names(exerciseTypes_df) <- stringr::str_replace_all(names(exerciseTypes_df), pattern = "\\.", replacement = " ")

# Remove incomplete cases
exerciseTypes_df_fullobs <- exerciseTypes_df %>% na.omit()

# Tell mgm, that the first 14 variables are categorical and the last two are gaussian
exerciseTypes_df_variable_types <- c(rep("c", 13), rep("g", 2))
exerciseTypes_df_variable_levels <- c(rep("2", 13), rep("1", 2))
# data.frame(exerciseTypes_df_variable_types, exerciseTypes_df_variable_levels, names(exerciseTypes_df))

mgm_obj_CV <- mgm::mgm(data = exerciseTypes_df_fullobs,
  type = exerciseTypes_df_variable_types,
  level = exerciseTypes_df_variable_levels,
  lambdaSel = "CV",
  lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj <- predict(object = mgm_obj_CV,
                         data = exerciseTypes_df_fullobs)

# pred_obj$errors

# Take R2 from gaussian, CC from categorical variables 
pie_errors <- c(pred_obj$errors[1:13, 4],
                pred_obj$errors[14:15, 3])

# Define node colors
node_colors <- c(rep(viridis::viridis(3, begin = 0.4, end = 0.95)[1], 13),
                 rep(viridis::viridis(3, begin = 0.4, end = 0.95)[3], 2))

exerciseTypes_mgm_withMeasures <- qgraph::qgraph(mgm_obj_CV$pairwise$wadj, 
            layout = "spring",
            repulsion = 0.99, # To nudge the network from originally bad visual state
            title = "Mixed graphical model: Types of reported physical activity and their relations to measured MVPA",
            edge.color = ifelse(mgm_obj_CV$pairwise$edgecolor == "darkgreen", "blue", mgm_obj_CV$pairwise$edgecolor),
            pie = pie_errors,
            pieColor = viridis::viridis(3, begin = 0.4, end = 0.95)[2],
            color = node_colors,
            labels = names(exerciseTypes_df_fullobs),
            label.cex = 0.75,
            label.scale = FALSE,
            label.color = c(rep("black", 15)))

The next graph is identical, except that model selection is done by the Extended Bayesian Information Criterion (EBIC).


exerciseTypes_df <- lmi %>% select(Kys0051.1:Kys0064.1) %>% 
  dplyr::select(contains(".1")) %>% 
  dplyr::mutate_all(funs(replace_na(., 0)))
# exerciseTypes_df$track <- df$track
# exerciseTypes_df$girl <- df$girl
exerciseTypes_df$`PA accelerometer` <- df$mvpaAccelerometer_T1
exerciseTypes_df$`PA self-report` <- df$padaysLastweek_T1

names(exerciseTypes_df) <- c("Team ball games", 
                             "Other ball games",
                             "Gym training",
                             "Combat sports",
                             "Fitness classes",
                             "Home workout",
                             "Cycling",
                             "Swimming",
                             "Walking",
                             "Running",
                             "Skiing",
                             "Roller skating",
                             "Horseback riding",
                             "Other",
                             "PA accelerometer",
                             "PA self-report"
                             )

# Roller skating has only 8 observations; leave out
exerciseTypes_df <- exerciseTypes_df %>% dplyr::select(-`Roller skating`)

# Variable types are muddled, change all to numeric
exerciseTypes_df <- as.data.frame(purrr::map(exerciseTypes_df, `class<-`, c("numeric"))) 

# Change data frame to type tbl to allow for spaces
exerciseTypes_df <- as.tbl(exerciseTypes_df)

# Take all names, replace the dots with space
names(exerciseTypes_df) <- stringr::str_replace_all(names(exerciseTypes_df), pattern = "\\.", replacement = " ")

# Remove incomplete cases
exerciseTypes_df_fullobs <- exerciseTypes_df %>% na.omit()

# Tell mgm, that the first 14 variables are categorical and the last two are gaussian
exerciseTypes_df_variable_types <- c(rep("c", 13), rep("g", 2))
exerciseTypes_df_variable_levels <- c(rep("2", 13), rep("1", 2))
# data.frame(exerciseTypes_df_variable_types, exerciseTypes_df_variable_levels, names(exerciseTypes_df))

mgm_obj_EBIC <- mgm::mgm(data = exerciseTypes_df_fullobs,
  type = exerciseTypes_df_variable_types,
  level = exerciseTypes_df_variable_levels,
  lambdaSel = "EBIC",
  # lambdaFolds = 10,
  pbar = FALSE, 
  binarySign = TRUE)
## Note that the sign of parameter estimates is stored separately; see ?mgm

pred_obj2 <- predict(object = mgm_obj_EBIC,
                         data = exerciseTypes_df_fullobs)

# pred_obj$errors

# Take R2 from gaussian, CC from categorical variables 
pie_errors2 <- c(pred_obj2$errors[1:13, 4],
                pred_obj2$errors[14:15, 3])

# Define node colors
node_colors <- c(rep(viridis::viridis(3, begin = 0.4, end = 0.95)[1], 13),
                 rep(viridis::viridis(3, begin = 0.4, end = 0.95)[3], 2))

exerciseTypes_mgm_withMeasures2 <- qgraph::qgraph(mgm_obj_EBIC$pairwise$wadj, 
            layout = "spring",
            repulsion = 0.99, # To nudge the network from originally bad visual state
            title = "Mixed graphical model: Types of reported physical activity and their relations to measured MVPA",
            edge.color = ifelse(mgm_obj_EBIC$pairwise$edgecolor == "darkgreen", "blue",
                                mgm_obj_EBIC$pairwise$edgecolor),
            pie = pie_errors2,
            pieColor = viridis::viridis(3, begin = 0.4, end = 0.95)[2],
            color = node_colors,
            labels = names(exerciseTypes_df_fullobs),
            label.cex = 0.75,
            label.scale = FALSE,
            label.color = c(rep("black", 15)))

To compare the two previous graphs, we again average the layout and plot them next to each other.

Bivariate correlations

Table below shows, how correlations between exercise types differ between the accelerometer and self-reported MVPA measure.


exerciseTypes_df <- lmi %>% select(Kys0051.1:Kys0064.1) %>% 
  dplyr::select(contains(".1")) %>% 
  dplyr::mutate_all(funs(replace_na(., 0)))
# exerciseTypes_df$track <- df$track
# exerciseTypes_df$girl <- df$girl
exerciseTypes_df$`PA accelerometer` <- df$mvpaAccelerometer_T1
exerciseTypes_df$`PA self-report` <- df$padaysLastweek_T1

names(exerciseTypes_df) <- c("Team ball games", 
                             "Other ball games",
                             "Gym training",
                             "Combat sports",
                             "Fitness classes",
                             "Home workout",
                             "Cycling",
                             "Swimming",
                             "Walking",
                             "Running",
                             "Skiing",
                             "Roller skating",
                             "Horseback riding",
                             "Other",
                             "PA accelerometer",
                             "PA self-report"
                             )

# Roller skating has only 8 observations; leave out
exerciseTypes_df <- exerciseTypes_df %>% dplyr::select(-`Roller skating`)

# Variable types are muddled, change all to numeric
exerciseTypes_df <- as.data.frame(purrr::map(exerciseTypes_df, `class<-`, c("numeric"))) 

# Change data frame to type tbl to allow for spaces
exerciseTypes_df <- as.tbl(exerciseTypes_df)

# Take all names, replace the dots with space
names(exerciseTypes_df) <- stringr::str_replace_all(names(exerciseTypes_df), pattern = "\\.", replacement = " ")

qgraph::cor_auto(exerciseTypes_df) %>% data.frame() %>% 
  dplyr::mutate(variable = names(exerciseTypes_df)) %>% 
  dplyr::mutate_at(vars(PA.accelerometer, PA.self.report), funs(round(., 3))) %>% 
  dplyr::select(variable, PA.accelerometer, PA.self.report) %>% 
  dplyr::mutate(diff = PA.accelerometer - PA.self.report) %>% 
  dplyr::arrange(desc(abs(diff))) %>% 
  dplyr::filter(variable != "PA accelerometer", variable != "PA self report") %>% 
  DT::datatable(caption = "Bivariate correlations between PA measures and self-reported activity types")

Chunked BCTs, PA, motivation

This section shows the correlations structure between BCTs (lumped into chunks based on whether they relate to frequency or agreement), motivational regulations and MVPA (self-reported MVPA the previous week and accelerometer-measured MVPA the following week).

Note: This is only to demonstrate data exploration, as many assumptions (such as multivariate normality, homogeneity, multilevel structure) are not accounted for.


bivariate_BCTs <- df %>% dplyr::select(
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1,
  'PA accelerometer' = mvpaAccelerometer_T1,
  'PA self-report' = padaysLastweek_T1,
  'autonomous' = PA_autonomous_T1,
  'controlled' = PA_controlled_T1) %>%
 rowwise() %>% 
  dplyr::select(`PA accelerometer`, `PA self-report`, autonomous, controlled, everything()) %>% 
  mutate_all(as.numeric)

# Create a covariance matrix of the data
covMatrix <- bivariate_BCTs %>% cov(use = "pairwise.complete.obs")

# Transform the matrix so, that lower diagonal of the matrix shows partial correlations,
# while the upper one shows bivariate correlations.
matrix_corLower_parcorUpper <- covMatrix %>% ggm::correlations()

# Show the matrix
matrix_corLower_parcorUpper %>% 
  papaja::apa_table(caption = "Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations")
(#tab:bivariate-correlations) Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations
PA accelerometer PA self-report autonomous controlled goal setting own plan plan by other reminder of plan subgoals trying new PA barrier identification problem solving PA identity reflection aligning PA with life values remind of PA benefits self-monitor (paper) self-monitor (app) memory cues goal review personal relevance reflection environmental changes (home) social support failure contemplated
PA accelerometer 1.00 0.18 0.10 -0.05 0.05 -0.08 0.06 -0.02 0.02 0.04 0.01 -0.08 0.02 0.04 0.01 -0.01 -0.03 -0.02 0.03 -0.04 0.03 0.03 0.01
PA self-report 0.29 1.00 0.20 -0.02 0.02 0.03 0.14 -0.06 0.06 0.10 -0.03 -0.02 -0.04 0.01 0.01 0.09 0.01 0.01 0.05 0.02 -0.02 0.01 -0.01
autonomous 0.24 0.45 1.00 0.03 0.14 0.07 0.11 -0.03 -0.01 0.10 -0.01 0.00 0.01 0.12 0.12 0.02 0.00 -0.03 0.01 0.15 -0.04 -0.05 0.02
controlled -0.02 0.05 0.13 1.00 -0.02 0.03 0.00 0.05 0.00 -0.02 0.07 -0.01 0.08 -0.09 0.04 -0.01 -0.01 0.01 -0.04 -0.01 0.01 0.10 0.12
goal setting 0.17 0.35 0.56 0.14 1.00 0.49 -0.02 0.00 0.05 0.00 -0.02 0.10 0.03 0.04 0.13 -0.05 -0.01 -0.02 0.05 -0.01 -0.03 0.07 0.03
own plan 0.12 0.36 0.53 0.16 0.74 1.00 0.12 0.15 0.11 0.05 0.01 0.02 -0.02 0.07 -0.02 0.03 -0.04 -0.02 0.07 0.00 0.01 0.00 -0.03
plan by other 0.18 0.37 0.41 0.11 0.40 0.48 1.00 0.18 0.11 -0.03 -0.04 0.00 0.02 0.01 -0.07 0.05 -0.01 0.01 -0.01 0.01 0.03 0.02 0.04
reminder of plan 0.10 0.29 0.38 0.17 0.47 0.57 0.50 1.00 0.25 0.05 0.08 0.01 0.06 0.02 -0.02 0.20 0.08 0.08 0.09 -0.04 -0.03 -0.03 -0.05
subgoals 0.15 0.36 0.45 0.15 0.54 0.60 0.48 0.64 1.00 0.13 0.02 0.13 0.03 0.05 -0.03 0.05 -0.02 0.06 0.01 -0.03 -0.01 -0.01 0.09
trying new PA 0.17 0.37 0.47 0.11 0.47 0.51 0.35 0.47 0.54 1.00 0.11 0.06 0.05 0.12 -0.07 -0.05 0.07 -0.04 0.11 0.04 0.09 0.02 -0.10
barrier identification 0.09 0.23 0.40 0.21 0.46 0.48 0.32 0.49 0.52 0.50 1.00 0.46 0.08 0.05 0.07 -0.02 -0.03 0.11 -0.06 0.01 0.02 0.01 0.06
problem solving 0.08 0.27 0.45 0.17 0.55 0.55 0.37 0.51 0.59 0.53 0.73 1.00 0.12 0.15 -0.06 0.01 0.07 -0.04 0.07 0.01 -0.05 0.02 0.09
PA identity reflection 0.14 0.28 0.49 0.20 0.52 0.51 0.36 0.47 0.51 0.51 0.57 0.62 1.00 0.36 0.10 0.01 -0.05 -0.02 0.03 0.13 -0.03 0.02 0.03
aligning PA with life values 0.17 0.32 0.55 0.11 0.56 0.56 0.38 0.46 0.54 0.55 0.57 0.64 0.71 1.00 0.03 -0.09 -0.01 0.02 -0.03 0.13 0.04 -0.03 0.01
remind of PA benefits 0.13 0.27 0.47 0.18 0.47 0.40 0.23 0.31 0.35 0.34 0.41 0.41 0.50 0.48 1.00 0.00 0.07 -0.03 0.05 0.31 0.00 0.09 0.07
self-monitor (paper) 0.10 0.31 0.30 0.14 0.31 0.39 0.38 0.56 0.46 0.34 0.35 0.36 0.31 0.28 0.29 1.00 0.19 0.26 0.12 0.00 0.12 0.08 -0.01
self-monitor (app) 0.05 0.20 0.22 0.09 0.23 0.26 0.24 0.41 0.32 0.30 0.28 0.31 0.23 0.23 0.25 0.51 1.00 0.19 0.07 -0.03 0.09 -0.02 0.01
memory cues 0.09 0.26 0.28 0.14 0.31 0.37 0.34 0.52 0.46 0.36 0.41 0.38 0.34 0.33 0.30 0.63 0.52 1.00 0.20 -0.02 0.23 0.03 0.01
goal review 0.16 0.36 0.45 0.14 0.50 0.53 0.39 0.55 0.53 0.50 0.45 0.51 0.49 0.48 0.46 0.55 0.43 0.58 1.00 0.19 0.03 0.07 0.08
personal relevance reflection 0.14 0.33 0.54 0.17 0.49 0.47 0.33 0.40 0.44 0.47 0.48 0.51 0.58 0.59 0.62 0.36 0.28 0.38 0.58 1.00 0.11 0.10 0.09
environmental changes (home) 0.12 0.24 0.28 0.16 0.31 0.34 0.30 0.39 0.38 0.38 0.36 0.34 0.34 0.35 0.34 0.51 0.41 0.57 0.50 0.45 1.00 0.30 0.07
social support 0.12 0.24 0.31 0.22 0.38 0.37 0.29 0.35 0.37 0.35 0.37 0.37 0.38 0.36 0.41 0.42 0.30 0.43 0.48 0.48 0.56 1.00 0.09
failure contemplated 0.09 0.20 0.32 0.23 0.36 0.34 0.27 0.31 0.38 0.27 0.40 0.43 0.40 0.38 0.39 0.29 0.23 0.32 0.41 0.44 0.35 0.38 1.00

Highest bivariate (Spearman) correlations with self-reported PA:

  1. I have tried out new ways for me to be physically active.
  2. I have personally made a specific plan (“what, where, how”) to implement my PA.
  3. I have a PA plan, which has been made by someone else, e.g. my sports club (e.g. a workout schedule).
  4. I have set PA goals for myself.
  5. I have broken down larger PA goals to smaller subgoals.
  6. I have compared my actualized PA with the PA goal I have set.
  7. I have attempted to find ways to exercise so, that it won’t obstruct but instead helps actualise my other life values.
  8. I have thought about which reasons to do PA are important to me personally.
  9. I have monitored my PA by marking the PA occasions on an exercise log on paper.
  10. I have a way by which I remind myself of my PA plan, e.g. I write it down in the calendar.

Prepare data and show correlation structure

(#tab:chunked-dataprep-corr) Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations
agr-BCTs frq-BCTs Accelerometer Self-report intrinsic identified introjected extrinsic
agr-BCTs 1.00 0.59 0.01 0.12 0.19 0.12 0.07 0.01
frq-BCTs 0.73 1.00 0.02 0.10 -0.01 0.06 0.06 0.08
Accelerometer 0.18 0.16 1.00 0.20 0.10 -0.03 -0.03 -0.02
Self-report 0.43 0.38 0.29 1.00 0.14 0.05 -0.03 -0.01
intrinsic 0.56 0.44 0.23 0.42 1.00 0.59 0.03 -0.13
identified 0.55 0.46 0.16 0.38 0.74 1.00 0.18 -0.07
introjected 0.30 0.28 0.02 0.12 0.24 0.32 1.00 0.36
extrinsic 0.03 0.09 -0.06 -0.05 -0.13 -0.08 0.33 1.00

Estimate and plot networks

Ising networks

Plot with only the BCTs

Prepare and dichotomise data (lots of skew in distributions).

nItems <- 19

bctdf <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1) %>%
 mutate(
  'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  'own plan' = ifelse(`own plan` == 1, 0, 1),
  'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
  'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  'self-monitor (paper)' = ifelse(`self-monitor (paper)` == 1, 0, 1),
  'self-monitor (app)' = ifelse(`self-monitor (app)` == 1, 0, 1),
  'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  'social support' = ifelse(`social support` == 1, 0, 1),
  'failure contemplated' = ifelse(`failure contemplated` == 1, 0, 1)) 

S.boys <- bctdf %>% filter(girl == "boy") %>% dplyr::select(`goal setting`:ncol(bctdf)) %>% na.omit(.) 
S.girls <- bctdf %>% filter(girl == "girl") %>% dplyr::select(`goal setting`:ncol(bctdf)) %>% na.omit(.)
nwBoys <- bootnet::estimateNetwork(S.boys, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   5%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |==========                                                       |  16%
  |                                                                       
  |==============                                                   |  21%
  |                                                                       
  |=================                                                |  26%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |========================                                         |  37%
  |                                                                       
  |===========================                                      |  42%
  |                                                                       
  |===============================                                  |  47%
  |                                                                       
  |==================================                               |  53%
  |                                                                       
  |======================================                           |  58%
  |                                                                       
  |=========================================                        |  63%
  |                                                                       
  |============================================                     |  68%
  |                                                                       
  |================================================                 |  74%
  |                                                                       
  |===================================================              |  79%
  |                                                                       
  |=======================================================          |  84%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |==============================================================   |  95%
  |                                                                       
  |=================================================================| 100%
nwGirls <- bootnet::estimateNetwork(S.girls, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |===                                                              |   5%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |==========                                                       |  16%
  |                                                                       
  |==============                                                   |  21%
  |                                                                       
  |=================                                                |  26%
  |                                                                       
  |=====================                                            |  32%
  |                                                                       
  |========================                                         |  37%
  |                                                                       
  |===========================                                      |  42%
  |                                                                       
  |===============================                                  |  47%
  |                                                                       
  |==================================                               |  53%
  |                                                                       
  |======================================                           |  58%
  |                                                                       
  |=========================================                        |  63%
  |                                                                       
  |============================================                     |  68%
  |                                                                       
  |================================================                 |  74%
  |                                                                       
  |===================================================              |  79%
  |                                                                       
  |=======================================================          |  84%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |==============================================================   |  95%
  |                                                                       
  |=================================================================| 100%

# Create means for filling nodes

girlmeans <- bctdf %>%
  dplyr::filter(girl == "girl") %>% 
  summarise_at(vars(-(id:girl)),
  funs(mean(., na.rm = TRUE))) 

boymeans <- bctdf %>%
  dplyr::filter(girl == "boy") %>% 
  summarise_at(vars(-(id:girl)),
  funs(mean(., na.rm = TRUE))) 

For girls and boys.

Network comparison test: boys vs. girls

P-value of network structure difference test: 0.361

P-value of global connectivity difference test: 0.02

P-values for edge strength differences among boys and girls. Omitted edges where p = 1.
Var1 Var2 p-value
plan by other self-monitor (app) 0.340
goal setting goal review 0.840
self-monitor (paper) goal review 0.676
environmental changes (home) failure contemplated 0.000

For all participants.

Ising network Combined items

nItems <- 17

bctdf <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1) %>%
 mutate(
  'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  'own plan' = ifelse(`own plan` == 1 & `plan by other` == 1, 0, 1),
  'reminder of plan' = ifelse(`reminder of plan` == 1, 0, 1),
  'subgoals' = ifelse(`subgoals` == 1, 0, 1),
  'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  'barrier identification' = ifelse(`barrier identification` == 1, 0, 1),
  'problem solving' = ifelse(`problem solving` == 1, 0, 1),
  'PA identity reflection' = ifelse(`PA identity reflection` == 1, 0, 1),
  'aligning PA with life values' = ifelse(`aligning PA with life values` == 1, 0, 1),
  'remind of PA benefits' = ifelse(`remind of PA benefits` == 1, 0, 1),
  'self-monitor' = ifelse(`self-monitor (paper)` == 1 & `self-monitor (app)` == 1, 0, 1),
#  'memory cues' = ifelse(`memory cues` == 1, 0, 1),
  'goal review' = ifelse(`goal review` == 1, 0, 1),
  'personal relevance reflection' = ifelse(`personal relevance reflection` == 1, 0, 1),
  'environmental changes (home)' = ifelse(`environmental changes (home)` == 1, 0, 1),
  'social support' = ifelse(`social support` == 1, 0, 1),
  'failure contemplated' = ifelse(`failure contemplated` == 1, 0, 1)) %>%
  dplyr::select(-`self-monitor (paper)`, -`self-monitor (app)`, -`plan by other`) %>% 
  mutate_all(as.numeric)

# Network for all participants

S.total <- bctdf %>% dplyr::select(6:ncol(bctdf))
nwBCT <- bootnet::estimateNetwork(S.total, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |========                                                         |  12%
  |                                                                       
  |============                                                     |  19%
  |                                                                       
  |================                                                 |  25%
  |                                                                       
  |====================                                             |  31%
  |                                                                       
  |========================                                         |  38%
  |                                                                       
  |============================                                     |  44%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |=====================================                            |  56%
  |                                                                       
  |=========================================                        |  62%
  |                                                                       
  |=============================================                    |  69%
  |                                                                       
  |=================================================                |  75%
  |                                                                       
  |=====================================================            |  81%
  |                                                                       
  |=========================================================        |  88%
  |                                                                       
  |=============================================================    |  94%
  |                                                                       
  |=================================================================| 100%

# Create means for filling nodes
piefill <- S.total %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

# Plot network
plot(nwBCT, layout = "spring", label.scale = FALSE, title = "Ising fit", label.cex = 0.75,
     pie = piefill, 
     color = "skyblue",
     pieBorder = 1)

Centrality and stability


qgraph::centrality(onlyCombinedBctsIsing)$InDegree
##                 MVPA questionnaire                 MVPA accelerometer 
##                          0.8556311                          0.2966012 
##              autonomous motivation              controlled motivation 
##                          1.1333014                          0.3589353 
##                       goal setting                           own plan 
##                          1.3678574                          1.1263288 
##                      plan by other                   reminder of plan 
##                          0.9578744                          1.3714270 
##                           subgoals                      trying new PA 
##                          1.0362904                          0.9438976 
##              remind of PA benefits                        goal review 
##                          0.8689656                          1.2104140 
##      personal relevance reflection       environmental changes (home) 
##                          1.4734305                          1.3303871 
##                     social support barriers identified or planned for 
##                          0.9332922                          1.0887339 
##              identity, life values                      monitoring PA 
##                          0.9847564                          0.8505746
scale(qgraph::centrality(onlyCombinedBctsIsing)$InDegree)
##                                           [,1]
## MVPA questionnaire                 -0.49444010
## MVPA accelerometer                 -2.27941234
## autonomous motivation               0.39215589
## controlled motivation              -2.08038073
## goal setting                        1.14108898
## own plan                            0.36989258
## plan by other                      -0.16797929
## reminder of plan                    1.15248686
## subgoals                            0.08240178
## trying new PA                      -0.21260670
## remind of PA benefits              -0.45186342
## goal review                         0.63837506
## personal relevance reflection       1.47818218
## environmental changes (home)        1.02144701
## social support                     -0.24646966
## barriers identified or planned for  0.24985280
## identity, life values              -0.08214548
## monitoring PA                      -0.51058543
## attr(,"scaled:center")
## [1] 1.010483
## attr(,"scaled:scale")
## [1] 0.3131869
qgraph::centrality(onlyCombinedBctsIsing)$Closeness
##                 MVPA questionnaire                 MVPA accelerometer 
##                        0.005018704                        0.003676450 
##              autonomous motivation              controlled motivation 
##                        0.005824559                        0.003789143 
##                       goal setting                           own plan 
##                        0.005581152                        0.005569459 
##                      plan by other                   reminder of plan 
##                        0.005588982                        0.006540042 
##                           subgoals                      trying new PA 
##                        0.005680872                        0.005494895 
##              remind of PA benefits                        goal review 
##                        0.005592491                        0.006176219 
##      personal relevance reflection       environmental changes (home) 
##                        0.006312982                        0.005688125 
##                     social support barriers identified or planned for 
##                        0.005120706                        0.005263721 
##              identity, life values                      monitoring PA 
##                        0.005565475                        0.005826165
qgraph::centrality(onlyCombinedBctsIsing)$Betweenness
##                 MVPA questionnaire                 MVPA accelerometer 
##                                 34                                  0 
##              autonomous motivation              controlled motivation 
##                                 24                                  2 
##                       goal setting                           own plan 
##                                 14                                 18 
##                      plan by other                   reminder of plan 
##                                 16                                 32 
##                           subgoals                      trying new PA 
##                                 10                                  4 
##              remind of PA benefits                        goal review 
##                                  6                                 10 
##      personal relevance reflection       environmental changes (home) 
##                                 34                                 34 
##                     social support barriers identified or planned for 
##                                 18                                 16 
##              identity, life values                      monitoring PA 
##                                  6                                 10

cor(qgraph::centrality(onlyCombinedBctsIsing)$InDegree, qgraph::centrality(onlyCombinedBctsIsing)$Betweenness, 
    method = "spearman") 
## [1] 0.5978302

# bootnet_stability_onlyCombinedBctsIsing <- bootnet::bootnet(onlyCombinedBctsIsing, stepwise = FALSE, nBoots=1000)
# save(bootnet_stability_onlyCombinedBctsIsing, file = "./Rdata_files/bootnet_stability_onlyCombinedBctsIsing.Rdata")
load("./Rdata_files/bootnet_stability_onlyCombinedBctsIsing.Rdata")

plot(bootnet_stability_onlyCombinedBctsIsing, labels = FALSE, order = "sample") 

GGM BCTs & motivation

The pie on nodes represents the median, as proportion of the theoretical maximum value (i.e. highest value on the questionnaire scale).

library(corrgram)

nItems <- 19

bctdf <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  'Autonomous' = PA_autonomous_T1,
  'Controlled' = PA_controlled_T1,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1) %>%
  rowwise() %>% 
  mutate( 
  #'has plan' = mean(c(`own plan`, `plan by other`), na.rm = TRUE),
  'self-monitor' = mean(c(`self-monitor (paper)`, `self-monitor (app)`), na.rm = TRUE)) %>%
  dplyr::select(-`self-monitor (paper)`, -`self-monitor (app)`) %>%
  mutate_all(as.numeric)

# Network for all participants

S.total <- bctdf %>% dplyr::select(`Autonomous`:ncol(bctdf))
nwBCT <- bootnet::estimateNetwork(S.total, default="ggmModSelect")

# Plot correlations (minmax crowds the diagonal as it plots the minimum and maximum values for each variable).
labs <- colnames(S.total)
corrgram::corrgram(S.total, 
         cor.method = "spearman", 
         # diag.panel=panel.minmax, 
         # lower.panel=panel.shade, 
         # lower.panel=panel.ellipse,
         # lower.panel=panel.cor,
         upper.panel=corrgram::panel.conf,
         lower.panel=corrgram::panel.conf,
         outer.labels=list(
           bottom=list(labels=labs,cex=.75, srt=60),
           left=list(labels=labs,cex=.75, srt=30))
         )

Network after combining goal setting and own planning, as well as barrier identification and problem solving:

Stability and robustness

Robustness test


autEdges <- summary(BCTboot1, statistics = "edge", rank = TRUE) %>% 
  dplyr::arrange(mean) %>% 
  dplyr::filter(stringr::str_detect(node1, 'Autonomous')) %>% # str_detect(id, 'Autonomous|Controlled') for both
  dplyr::filter(!(node2 == 'Controlled')) %>% 
  data.frame() %>% 
  dplyr::select(CIlower, mean, CIupper, node2)

contEdges <- summary(BCTboot1, statistics = "edge", rank = TRUE) %>% 
  dplyr::arrange(mean) %>% 
  dplyr::filter(stringr::str_detect(node1, 'Controlled')) %>% # str_detect(id, 'Autonomous|Controlled') for both
  data.frame() %>% 
  dplyr::select(CIlower, mean, CIupper, node2)

userfriendlyscience::diamondPlot(autEdges, 
            ciCols = c("CIlower", "mean", "CIupper"), 
            color = viridis::viridis(2, end = 0.8)[1], 
            alpha = 0.3, 
            yLabels = autEdges$node2, 
            fixedSize = 0.3, 
            xlab = NULL) +
  userfriendlyscience::diamondPlot(contEdges, 
              ciCols = c("CIlower", "mean", "CIupper"), 
              color = viridis::viridis(2, end = 0.8)[2], 
              alpha = 0.3, 
              yLabels = autEdges$node2, 
              fixedSize = 0.3, 
              xlab = NULL, 
              returnLayerOnly = TRUE) +
  geom_rect(aes(xmin=Inf, xmax=Inf, ymin=Inf, ymax=Inf, fill = "Controlled"), 
            colour=NA, alpha=0.05) + # Create invisible rectangle for legend
  geom_rect(aes(xmin=Inf, xmax=Inf, ymin=Inf, ymax=Inf, fill = "Autonomous"), 
            colour=NA, alpha=0.05) + # Create invisible rectangle for legend
  scale_fill_manual('Connected node',
                      values = viridis::viridis(2, end = 0.8)[1:2],  
                      guide = guide_legend(override.aes = list(alpha = 1))) +
  ggtitle("Relative strengths of edges containing autonomous \nor controlled motivation (model with all items)")

  
# Combined items

autEdges <- summary(BCTboot2, statistics = "edge", rank = TRUE) %>% 
  dplyr::arrange(mean) %>% 
  dplyr::filter(stringr::str_detect(node1, 'Autonomous')) %>% # str_detect(id, 'Autonomous|Controlled') for both
  dplyr::filter(!(node2 == 'Controlled')) %>% 
  data.frame() %>% 
  dplyr::select(CIlower, mean, CIupper, node2)

contEdges <- summary(BCTboot2, statistics = "edge", rank = TRUE) %>% 
  dplyr::arrange(mean) %>% 
  dplyr::filter(stringr::str_detect(node1, 'Controlled')) %>% # str_detect(id, 'Autonomous|Controlled') for both
  data.frame() %>% 
  dplyr::select(CIlower, mean, CIupper, node2)

userfriendlyscience::diamondPlot(autEdges, 
            ciCols = c("CIlower", "mean", "CIupper"), 
            color = viridis::viridis(2, end = 0.8)[1], 
            alpha = 0.3, 
            yLabels = autEdges$node2, 
            fixedSize = 0.3, 
            xlab = NULL) +
  userfriendlyscience::diamondPlot(contEdges, 
              ciCols = c("CIlower", "mean", "CIupper"), 
              color = viridis::viridis(2, end = 0.8)[2], 
              alpha = 0.3, 
              yLabels = autEdges$node2, 
              fixedSize = 0.3, 
              xlab = NULL, 
              returnLayerOnly = TRUE) +
  geom_rect(aes(xmin=Inf, xmax=Inf, ymin=Inf, ymax=Inf, fill = "Controlled"), 
            colour=NA, alpha=0.05) + # Create invisible rectangle for legend
  geom_rect(aes(xmin=Inf, xmax=Inf, ymin=Inf, ymax=Inf, fill = "Autonomous"), 
            colour=NA, alpha=0.05) + # Create invisible rectangle for legend
  scale_fill_manual('Connected node',
                      values = viridis::viridis(2, end = 0.8)[1:2],  
                      guide = guide_legend(override.aes = list(alpha = 1))) +
  ggtitle("Relative strengths of edges containing autonomous \nor controlled motivation (model with combined items)")

Add accelerometer-measured MVPA


nItems_PA <- 20

bctdf_PA <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  'MVPA' = mvpaAccelerometer_T1,
  'Autonomous' = PA_autonomous_T1,
  'Controlled' = PA_controlled_T1,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'reminder of plan' = PA_agreementDependentBCT_04_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1,
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'barrier identification' = PA_agreementDependentBCT_07_T1,
  'problem solving' = PA_agreementDependentBCT_08_T1,
  'PA identity reflection' = PA_agreementDependentBCT_09_T1,
  'aligning PA with life values' = PA_agreementDependentBCT_10_T1,
  'remind of PA benefits' = PA_frequencyDependentBCT_01_T1,
  'self-monitor (paper)' = PA_frequencyDependentBCT_02_T1,
  'self-monitor (app)' = PA_frequencyDependentBCT_03_T1,
#  'memory cues' = PA_frequencyDependentBCT_04_T1,
  'goal review' = PA_frequencyDependentBCT_05_T1,
  'personal relevance reflection' = PA_frequencyDependentBCT_06_T1,
  'environmental changes (home)' = PA_frequencyDependentBCT_07_T1,
  'social support' = PA_frequencyDependentBCT_08_T1,
  'failure contemplated' = PA_frequencyDependentBCT_09_T1) %>%
  rowwise() %>% 
  mutate( 
  #'has plan' = mean(c(`own plan`, `plan by other`), na.rm = TRUE),
  'self-monitor' = mean(c(`self-monitor (paper)`, `self-monitor (app)`), na.rm = TRUE)) %>%
  dplyr::select(-`self-monitor (paper)`, -`self-monitor (app)`) %>% 
  mutate_all(as.numeric)

# Network for all participants

S.total_PA <- bctdf_PA %>% dplyr::select(`MVPA`:ncol(bctdf_PA))
nwBCT_PA <- bootnet::estimateNetwork(S.total_PA, default="ggmModSelect")

labs <- colnames(S.total_PA)

# Create means for filling nodes
piefill <- S.total_PA %>% 
  dplyr::select(-MVPA, -Autonomous, -Controlled) %>% 
  data.frame() %>% 
  summarise_all(funs(median(., na.rm = TRUE) / 6))   

piefill$MVPA <- median(S.total_PA$MVPA, na.rm = TRUE) / (60*24) 
piefill$Autonomous <- median(S.total_PA$Autonomous, na.rm = TRUE) / 5
piefill$Controlled <- median(S.total_PA$Controlled, na.rm = TRUE) / 5

piefill <- piefill %>% dplyr::select(MVPA, Autonomous, Controlled, everything())

# Plot network
plot(nwBCT_PA, layout = "spring", label.scale = FALSE, title = "GGM: Accelerometer-MVPA, BCTs & motivation (all items)", label.cex = 0.75,
     pie = piefill, 
     color = "skyblue",
     pieBorder = 1)

Demonstrating the Ising network

… in PA, autonomous motivation, and top-5 BCTs

Variables are binarised:
* If one reports not using the BCT, they get a zero, otherwise a 1
* If one reports not having done any MVPA during the last week, they get a zero, otherwise a 1
* On the autonomous motivation sum score, if one reports lower agreement than 3 (indicating “sometimes true for me”) on average, they get a zero, otherwise a 1

We include the top 5 BCTs according to their bivariate Spearman correlations with self-reported PA. Self-report instead of accelerometer due to higher sample size and accounting for e.g. gym.

  1. I have tried out new ways for me to be physically active.
  2. I have personally made a specific plan (“what, where, how”) to implement my PA.
  3. I have a PA plan, which has been made by someone else, e.g. my sports club (e.g. a workout schedule).
  4. I have set PA goals for myself.
  5. I have broken down larger PA goals to smaller subgoals.

When a person has tried out a new PA way to be physically active, they have almost (because question time scales don’t overlap completely) by definition done MVPA lately. Therefore, we substitute this with:

  1. I have compared my actualized PA with the PA goal I have set.

Centrality and stability:

Heterogeneity check


top5Bcts_tracks_df <- df %>% dplyr::select(
  track,
  PA = padaysLastweek_T1,
  Autonomous = PA_autonomous_T1, 
  'trying new PA' = PA_agreementDependentBCT_06_T1,
  'own plan' = PA_agreementDependentBCT_02_T1,
  'plan by other' = PA_agreementDependentBCT_03_T1,
  'goal setting' = PA_agreementDependentBCT_01_T1,
  'subgoals' = PA_agreementDependentBCT_05_T1) %>% 
 mutate(
  'PA' = ifelse(`PA` == 0, 0, 1),
  'Autonomous' = ifelse(`Autonomous` < 3, 0, 1),
  'trying new PA' = ifelse(`trying new PA` == 1, 0, 1),
  'own plan' = ifelse(`own plan` == 1, 0, 1),
  'plan by other' = ifelse(`plan by other` == 1, 0, 1),
  'goal setting' = ifelse(`goal setting` == 1, 0, 1),
  'subgoals' = ifelse(`subgoals` == 1, 0, 1))

heterogeneity_Nur <- top5Bcts_tracks_df %>% 
  dplyr::filter(track == "Nur") %>% 
  dplyr::select(-track) %>% 
  na.omit() 
NurMeans <- heterogeneity_Nur %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

heterogeneity_HRC <- top5Bcts_tracks_df %>%
  dplyr::filter(track == "HRC") %>% 
  dplyr::select(-track) %>% 
  na.omit()
HRCMeans <- heterogeneity_HRC %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

heterogeneity_BA <- top5Bcts_tracks_df %>% 
  dplyr::filter(track == "BA") %>% 
  dplyr::select(-track) %>% 
  na.omit()
BAMeans <- heterogeneity_BA %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

heterogeneity_IT <- top5Bcts_tracks_df %>% 
  dplyr::filter(track == "IT") %>% 
  dplyr::select(-track) %>% 
  na.omit() 
ITMeans <- heterogeneity_IT %>%
  summarise_all(funs(mean(., na.rm = TRUE))) 

network_Nur <- bootnet::estimateNetwork(heterogeneity_Nur, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |===================                                              |  29%
  |                                                                       
  |============================                                     |  43%
  |                                                                       
  |=====================================                            |  57%
  |                                                                       
  |==============================================                   |  71%
  |                                                                       
  |========================================================         |  86%
  |                                                                       
  |=================================================================| 100%
network_HRC <- bootnet::estimateNetwork(heterogeneity_HRC, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |===================                                              |  29%
  |                                                                       
  |============================                                     |  43%
  |                                                                       
  |=====================================                            |  57%
  |                                                                       
  |==============================================                   |  71%
  |                                                                       
  |========================================================         |  86%
  |                                                                       
  |=================================================================| 100%
network_BA <- bootnet::estimateNetwork(heterogeneity_BA, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |===================                                              |  29%
  |                                                                       
  |============================                                     |  43%
  |                                                                       
  |=====================================                            |  57%
  |                                                                       
  |==============================================                   |  71%
  |                                                                       
  |========================================================         |  86%
  |                                                                       
  |=================================================================| 100%
network_IT <- bootnet::estimateNetwork(heterogeneity_IT, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |=========                                                        |  14%
  |                                                                       
  |===================                                              |  29%
  |                                                                       
  |============================                                     |  43%
  |                                                                       
  |=====================================                            |  57%
  |                                                                       
  |==============================================                   |  71%
  |                                                                       
  |========================================================         |  86%
  |                                                                       
  |=================================================================| 100%

graph_Nur <- plot(network_Nur, layout="spring", cut=0, label.scale = FALSE,
                  pie = NurMeans, pieBorder = 1, title = "Practical nurse")

Results from the network comparison test between Nur and IT on “top-5” BCTs:

[1] “Similarity”

Correlation between Nur and IT edge strengths: 0.8105599

Correlation between Nur and IT networks: 0.4413255

[1] “Difference”

P-value for the test of identical network structure: 0.785

P-value for the test of identical connectivity in networks: 0.217

(#tab:top5bcts-nct-results) p-values on difference test in edges between Nur and IT
Var1 Var2 p-value
8 PA Autonomous 1.00
15 PA trying new PA 1.00
16 Autonomous trying new PA 1.00
22 PA own plan 1.00
23 Autonomous own plan 1.00
24 trying new PA own plan 1.00
29 PA plan by other 1.00
30 Autonomous plan by other 1.00
31 trying new PA plan by other 1.00
32 own plan plan by other 1.00
36 PA goal setting 1.00
37 Autonomous goal setting 1.00
38 trying new PA goal setting 1.00
39 own plan goal setting 1.00
40 plan by other goal setting 1.00
43 PA subgoals 1.00
44 Autonomous subgoals 1.00
45 trying new PA subgoals 1.00
46 own plan subgoals 1.00
47 plan by other subgoals 1.00
48 goal setting subgoals 1.00

Number of edges, which appear different (p<0.05): 0

PA determinants: unregularised correlations visualised

# Network without motivation variables
data <- df %>% dplyr::select('PA' = mvpaAccelerometer_T1, 'SB' = sitLieAccelerometer_T1,
'fat%' = fatpct_T1,'action planning' = PA_actionplan_T1, 'coping planning' = PA_copingplan_T1, 'frequency-related BCTs' = PA_frequencyDependentBCT_T1, 'agreement-related BCTs' = PA_agreementDependentBCT_T1, 'amotivation' = PA_amotivation_T1, 'autonomous motivation' = PA_autonomous_T1, 'controlled motivation' = PA_controlled_T1, 'descriptive norm' = PA_descriptiveNorm_T1, 'injunctive norm' = PA_injunctiveNorm_T1, 'intention' = PA_intention_T1, 'outcome expectations' = PA_outcomeExpectations_T1, 'self-efficacy / perceivedBehaviouralControl' = PA_selfEfficacyperceivedBehaviouralControl_T1, 'perceived opportunities' = PA_opportunities_T1) %>% 
  mutate_all(as.numeric)

names <- df %>% dplyr::select('PA' = mvpaAccelerometer_T1, 'SB' = sitLieAccelerometer_T1,
'fat%' = fatpct_T1,'action planning' = PA_actionplan_T1, 'coping planning' = PA_copingplan_T1, 'frequency-related BCTs' = PA_frequencyDependentBCT_T1, 'agreement-related BCTs' = PA_agreementDependentBCT_T1, 'amotivation' = PA_amotivation_T1, 'autonomous motivation' = PA_autonomous_T1, 'controlled motivation' = PA_controlled_T1, 'descriptive norm' = PA_descriptiveNorm_T1, 'injunctive norm' = PA_injunctiveNorm_T1, 'intention' = PA_intention_T1, 'outcome expectations' = PA_outcomeExpectations_T1, 'self-efficacy / perceivedBehaviouralControl' = PA_selfEfficacyperceivedBehaviouralControl_T1, 'perceived opportunities' = PA_opportunities_T1) %>% names

# Spinglass algorithm detects communities. Tutorial here: http://psych-networks.com/r-tutorial-identify-communities-items-networks/

cormatrix <- qgraph::cor_auto(data) 

piefill <- data %>%
  summarise_all(funs(mean(., na.rm = TRUE))) %>% 
  mutate_at(vars(PA, SB),
            funs(. / (24*60))) %>% # proportion of day used doing the behaviour
  mutate_at(vars(`action planning`, `coping planning`),
            funs(. / 4)) %>% 
  mutate_at(vars(6:ncol(data)),
            funs(. / 7)) %>% 
  mutate_at(vars(`fat%`),
            funs(. / 100))  

nodeColors <- c(rep(viridis::viridis(7, begin = 0.3, end = 1)[1], 2), # PA, SB
                rep(viridis::viridis(7, begin = 0.3, end = 1)[2], 1), # fat
                rep(viridis::viridis(7, begin = 0.3, end = 1)[3], 2), # Action, coping planning
                rep(viridis::viridis(7, begin = 0.3, end = 1)[4], 2), # 2x bcts
                rep(viridis::viridis(7, begin = 0.3, end = 1)[5], 3), # Motivations
                rep(viridis::viridis(7, begin = 0.3, end = 1)[6], 2), # norms
                rep(viridis::viridis(7, begin = 0.3, end = 1)[7], 1), # intention
                rep(viridis::viridis(7, begin = 0.3, end = 1)[6], 3)) # OE, SE/perceivedBehaviouralControl, Opportunities


qgraph::qgraph(qgraph::cor_auto(data), layout = "spring", labels = TRUE, 
       # groups = group.spinglass, 
     color=nodeColors,
     label.cex = 0.75,
     label.scale = TRUE,
     pie = piefill, 
     color = "skyblue",
     nodeNames = names,
     pieBorder = 1,
     legend.cex = 0.4,
     theme = "colorblind",
     edge.labels = TRUE,
     edge.label.cex = 0.75,
     minimum = 0.1,
     title = "Bivariate correlations of PA determinants (<0.1 not shown)")

Symptom network: all


sympdf <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  "Neck and shoulder pain" = symptom_neckShoulderPain_T1,
  "Lower back pain" = symptom_lowerBackPain_T1,
  "Stomach ache" = symptom_stomachAche_T1,
  "Tension or nervousness" = symptom_tensionNervousness_T1,
  "Irritability or anger bursts" = symptom_irritabilityAngerbursts_T1,
  "Difficulty with sleep" = symptom_sleepDifficulty_T1,
  "Headache" = symptom_headAche_T1,
  "Tiredness or faintness" = symptom_tirednessFaintness_T1,
  "Fat pct" = fatpct_T1,
  "PA" = mvpaAccelerometer_T1,
  "SB" = sitLieAccelerometer_T1
) %>% 
  mutate(
    'Neck and shoulder pain' = ifelse(`Neck and shoulder pain` == 1, 0, 1),
    'Lower back pain' = ifelse(`Lower back pain` == 1, 0, 1),
    'Stomach ache' = ifelse(`Stomach ache` == 1, 0, 1),
    'Tension or nervousness' = ifelse(`Tension or nervousness` == 1, 0, 1),
    'Irritability or anger bursts' = ifelse(`Irritability or anger bursts` == 1, 0, 1),
    'Difficulty with sleep' = ifelse(`Difficulty with sleep` == 1, 0, 1),
    'Headache' = ifelse(`Headache` == 1, 0, 1),
    'Tiredness or faintness' = ifelse(`Tiredness or faintness` == 1, 0, 1),
    'Fat pct' = `Fat pct` / 100) %>% 
  data.frame

S.all <- sympdf %>% dplyr::select(6:ncol(sympdf)) %>% na.omit(.) 

nwAll <- bootnet::estimateNetwork(S.all, default="mgm")

allmeans <- sympdf %>%  
  summarise_at(vars(6:16),
  funs(mean(., na.rm = TRUE))) %>%  
  mutate_at(vars(PA, SB),
            funs(. / (24*60)))  # proportion of day used doing the behaviour


plot(nwAll, label.scale = FALSE, title = "All", label.cex = 0.75, 
     pie = allmeans, 
     color = "skyblue",
     pieBorder = 1)

Symptom network: boys and girls


sympdf <- df %>% dplyr::select(id,
  intervention,
  group,
  school,
  girl,
  "Neck and shoulder pain" = symptom_neckShoulderPain_T1,
  "Lower back pain" = symptom_lowerBackPain_T1,
  "Stomach ache" = symptom_stomachAche_T1,
  "Tension or nervousness" = symptom_tensionNervousness_T1,
  "Irritability or anger bursts" = symptom_irritabilityAngerbursts_T1,
  "Difficulty with sleep" = symptom_sleepDifficulty_T1,
  "Headache" = symptom_headAche_T1,
  "Tiredness or faintness" = symptom_tirednessFaintness_T1,
  "Fat pct" = fatpct_T1,
  "PA" = mvpaAccelerometer_T1,
  "SB" = sitLieAccelerometer_T1
) %>% 
  mutate(
    'Neck and shoulder pain' = ifelse(`Neck and shoulder pain` == 1, 0, 1),
    'Lower back pain' = ifelse(`Lower back pain` == 1, 0, 1),
    'Stomach ache' = ifelse(`Stomach ache` == 1, 0, 1),
    'Tension or nervousness' = ifelse(`Tension or nervousness` == 1, 0, 1),
    'Irritability or anger bursts' = ifelse(`Irritability or anger bursts` == 1, 0, 1),
    'Difficulty with sleep' = ifelse(`Difficulty with sleep` == 1, 0, 1),
    'Headache' = ifelse(`Headache` == 1, 0, 1),
    'Tiredness or faintness' = ifelse(`Tiredness or faintness` == 1, 0, 1),
    'Fat pct' = `Fat pct` / 100)

S.boys <- sympdf %>% filter(girl == "boy") %>% dplyr::select("Neck and shoulder pain":ncol(sympdf)) %>% na.omit(.) 
S.girls <- sympdf %>% filter(girl == "girl") %>% dplyr::select("Neck and shoulder pain":ncol(sympdf)) %>% na.omit(.)
nwBoys <- bootnet::estimateNetwork(S.boys, default="mgm")
nwGirls <- bootnet::estimateNetwork(S.girls, default="mgm")

girlmeans <- sympdf %>% group_by(girl) %>% 
  summarise_at(vars("Neck and shoulder pain":"SB"),
  funs(mean(., na.rm = TRUE))) %>% 
  filter(girl == "girl") %>% 
  mutate_at(vars(PA, SB),
            funs(. / (24*60))) %>% # proportion of day used doing the behaviour
  dplyr::select(-(girl))

boymeans <- sympdf %>% group_by(girl) %>% 
  summarise_at(vars("Neck and shoulder pain":"SB"),
  funs(mean(., na.rm = TRUE))) %>% 
  filter(girl == "boy") %>% 
  mutate_at(vars(PA, SB),
            funs(. / (24*60))) %>% # proportion of day used doing the behaviour
  dplyr::select(-(girl))


layout(t(1:2))
plot(nwGirls, label.scale = FALSE, title = "Girls", label.cex = 0.75,
     pie = girlmeans, 
     color = "skyblue",
     pieBorder = 1)

plot(nwBoys, label.scale = FALSE, title = "Boys", label.cex = 0.75, 
     pie = boymeans, 
     color = "skyblue",
     pieBorder = 1)

symptom network: educational tracks

PA determinant network


data <- df %>% 
  dplyr::select(
    "MVPA accelerometer" = mvpaAccelerometer_T1, 
    "planning" = PA_actCop_T1, 
    "BCT" = PA_frequencyDependentBCT_T1, 
    "amotivation" = PA_amotivation_T1, 
    "autonomous" = PA_autonomous_T1, 
    "controlled" = PA_controlled_T1, 
    "descriptive norm" = PA_descriptiveNorm_T1, 
    "fat pct" = fatpct_T1, 
    "injunctive norm" = PA_injunctiveNorm_T1, 
    "intention" = PA_intention_T1, 
    "outcome expectations" = PA_outcomeExpectations_T1, 
    "opportunities" = PA_opportunities_T1, 
    "self-efficacy perceivedBehaviouralControl" = PA_selfEfficacyperceivedBehaviouralControl_T1) %>% 
  mutate_all(funs(as.numeric(.))) 

covMatrix <- data %>% cov(use = "pairwise.complete.obs")

# Transform the matrix so, that lower diagonal of the matrix shows partial correlations,
# while the upper one shows bivariate correlations.
matrix_corLower_parcorUpper <- covMatrix %>% ggm::correlations()

# Show the matrix
matrix_corLower_parcorUpper %>% papaja::apa_table(caption = "Correlation matrix of hypothesised determinants. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations")
## <caption>(\#tab:determinants)</caption>
## 
## <caption>*Correlation matrix of hypothesised determinants. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations*</caption>
## 
## 
## 
##                                             MVPA accelerometer   planning   BCT     amotivation   autonomous   controlled   descriptive norm   fat pct   injunctive norm   intention   outcome expectations   opportunities   self-efficacy perceivedBehaviouralControl 
## ------------------------------------------  -------------------  ---------  ------  ------------  -----------  -----------  -----------------  --------  ----------------  ----------  ---------------------  --------------  ------------------------------------------
## MVPA accelerometer                          1.00                 0.01       0.07    -0.09         0.13         -0.02        -0.03              -0.08     0.00              0.01        -0.10                  -0.05           0.06                                      
## planning                                    0.17                 1.00       0.23    0.04          0.27         0.00         0.01               -0.03     0.04              0.25        -0.03                  0.11            0.05                                      
## BCT                                         0.16                 0.47       1.00    0.10          0.26         0.13         0.02               0.06      -0.01             0.06        0.01                   -0.01           -0.11                                     
## amotivation                                 -0.15                -0.25      -0.08   1.00          -0.15        0.29         0.03               -0.07     -0.02             -0.24       -0.14                  -0.12           0.05                                      
## autonomous                                  0.24                 0.62       0.51    -0.37         1.00         0.16         0.08               -0.18     -0.05             0.24        0.32                   0.04            0.08                                      
## controlled                                  -0.02                0.09       0.23    0.26          0.13         1.00         -0.02              0.14      0.16              0.00        0.02                   -0.08           -0.13                                     
## descriptive norm                            0.06                 0.33       0.21    -0.18         0.37         0.04         1.00               -0.05     0.38              0.15        0.00                   0.14            0.05                                      
## fat pct                                     -0.13                -0.12      -0.02   0.03          -0.17        0.12         -0.09              1.00      0.02              0.03        0.11                   0.02            -0.06                                     
## injunctive norm                             0.03                 0.23       0.15    -0.11         0.23         0.15         0.47               0.00      1.00              0.04        0.08                   0.04            0.06                                      
## intention                                   0.17                 0.57       0.37    -0.43         0.63         0.02         0.40               -0.08     0.26              1.00        0.04                   -0.03           0.11                                      
## outcome expectations                        0.05                 0.35       0.26    -0.35         0.54         0.04         0.28               0.01      0.24              0.42        1.00                   0.12            0.06                                      
## opportunities                               0.05                 0.33       0.14    -0.31         0.35         -0.11        0.33               -0.06     0.22              0.33        0.35                   1.00            0.27                                      
## self-efficacy perceivedBehaviouralControl   0.11                 0.28       0.06    -0.22         0.32         -0.15        0.27               -0.12     0.20              0.33        0.28                   0.42            1.00

# Plot the matrix as a correlogram
matrix_corLower_parcorUpper %>% corrgram::corrgram(
  type = "cor",
  lower.panel = corrgram::panel.pie,
  upper.panel = corrgram::panel.pie,
  main = "Bivariate (upper diagonal) and partial (lower diagonal)\ncorrelations of PA determinants")

ggm estimation

A dressed-up version of the last graph. Pies indicate mean as a proportion of the maximum observed value in that variable in question.

Centrality and stability


qgraph::centrality(bootnetgraph)$InDegree
##                        MVPA accelerometer 
##                                 0.4219556 
##                                  planning 
##                                 0.8819272 
##                                       BCT 
##                                 0.8315025 
##                               amotivation 
##                                 1.0103095 
##                                autonomous 
##                                 1.9082304 
##                                controlled 
##                                 1.0466690 
##                          descriptive norm 
##                                 0.7969049 
##                                   fat pct 
##                                 0.4909482 
##                           injunctive norm 
##                                 0.7170571 
##                                 intention 
##                                 1.0241657 
##                      outcome expectations 
##                                 0.9513261 
##                             opportunities 
##                                 0.8908195 
## self-efficacy perceivedBehaviouralControl 
##                                 0.8397455
scale(qgraph::centrality(bootnetgraph)$InDegree)
##                                                  [,1]
## MVPA accelerometer                        -1.36911160
## planning                                  -0.07499172
## BCT                                       -0.21686031
## amotivation                                0.28620909
## autonomous                                 2.81248977
## controlled                                 0.38850581
## descriptive norm                          -0.31420004
## fat pct                                   -1.17500244
## injunctive norm                           -0.53885016
## intention                                  0.32519320
## outcome expectations                       0.12026074
## opportunities                             -0.04997347
## self-efficacy perceivedBehaviouralControl -0.19366889
## attr(,"scaled:center")
## [1] 0.9085816
## attr(,"scaled:scale")
## [1] 0.355432
qgraph::centrality(bootnetgraph)$Closeness
##                        MVPA accelerometer 
##                               0.006700290 
##                                  planning 
##                               0.009973783 
##                                       BCT 
##                               0.009072923 
##                               amotivation 
##                               0.009086420 
##                                autonomous 
##                               0.012090602 
##                                controlled 
##                               0.009804271 
##                          descriptive norm 
##                               0.008196141 
##                                   fat pct 
##                               0.007323929 
##                           injunctive norm 
##                               0.007676769 
##                                 intention 
##                               0.011089400 
##                      outcome expectations 
##                               0.010084209 
##                             opportunities 
##                               0.008227697 
## self-efficacy perceivedBehaviouralControl 
##                               0.008207229
qgraph::centrality(bootnetgraph)$Betweenness
##                        MVPA accelerometer 
##                                         0 
##                                  planning 
##                                         2 
##                                       BCT 
##                                         0 
##                               amotivation 
##                                         2 
##                                autonomous 
##                                        44 
##                                controlled 
##                                        12 
##                          descriptive norm 
##                                        12 
##                                   fat pct 
##                                         0 
##                           injunctive norm 
##                                         2 
##                                 intention 
##                                        24 
##                      outcome expectations 
##                                         6 
##                             opportunities 
##                                         6 
## self-efficacy perceivedBehaviouralControl 
##                                         2

cor(qgraph::centrality(bootnetgraph)$InDegree, qgraph::centrality(bootnetgraph)$Betweenness, 
    method = "spearman") 
## [1] 0.7614282

# bootnet_stability_determinants <- bootnet::bootnet(determinants_ggm_network, stepwise = FALSE, nBoots=1000)
# save(bootnet_stability_determinants, file = "./Rdata_files/bootnet_stability_determinants.Rdata")
load("./Rdata_files/bootnet_stability_determinants.Rdata")

plot(bootnet_stability_determinants, labels = TRUE, order = "sample") 

PA motivation examined

Motivation correlation matrix

(#tab:motivation-corrmatrix) Correlation matrix of key variables of interest. Lower diagonal shows bivariate correlations, upper diagonal shows partial correlations
mvpaAccelerometer_T1 padaysLastweek_T1 PA_amotivation_02_T1 PA_amotivation_01_T1 PA_amotivation_03_T1 PA_amotivation_04_T1 PA_extrinsic_01_T1 PA_extrinsic_02_T1 PA_extrinsic_03_T1 PA_introjected_01_T1 PA_introjected_02_T1 PA_identified_01_T1 PA_identified_02_T1 PA_identified_03_T1 PA_integrated_01_T1 PA_integrated_02_T1 PA_integrated_03_T1 PA_intrinsic_01_T1 PA_intrinsic_02_T1 PA_intrinsic_03_T1 Autonomous_sumscore Controlled_sumscore weartimeAccelerometer_T1 mvpaAccelerometer_percentageWeartime_T1
mvpaAccelerometer_T1 1.00 0.11 0.02 -0.01 -0.02 -0.02 -0.03 -0.05 -0.05 -0.05 -0.05 0.01 -0.01 0.03 0.06 0.01 0.00 0.04 -0.01 0.06 -0.03 0.05 0.90 1.00
padaysLastweek_T1 0.29 1.00 0.01 0.03 -0.02 0.05 -0.04 -0.01 -0.03 -0.03 -0.02 -0.01 -0.01 0.03 -0.01 -0.02 0.03 -0.04 0.00 0.03 0.02 0.03 -0.11 -0.09
PA_amotivation_02_T1 -0.15 -0.11 1.00 0.33 0.23 0.13 0.00 0.03 0.04 0.00 0.02 -0.02 -0.02 -0.02 -0.04 -0.01 -0.04 -0.05 -0.02 -0.01 0.03 -0.01 -0.04 -0.03
PA_amotivation_01_T1 -0.17 -0.13 0.59 1.00 0.13 0.15 0.03 0.01 0.05 0.02 0.00 -0.02 -0.03 -0.03 0.00 -0.05 -0.03 -0.03 -0.02 -0.04 0.03 -0.02 0.03 0.01
PA_amotivation_03_T1 -0.08 -0.11 0.57 0.54 1.00 0.47 0.04 0.02 0.02 0.02 0.01 -0.04 -0.09 -0.01 0.01 -0.03 0.00 -0.03 -0.07 -0.07 0.04 -0.02 0.03 0.02
PA_amotivation_04_T1 -0.10 -0.06 0.53 0.52 0.69 1.00 0.00 0.01 0.02 -0.01 0.01 0.01 -0.04 -0.01 -0.02 0.04 0.03 -0.01 -0.01 0.06 -0.01 0.00 0.02 0.02
PA_extrinsic_01_T1 -0.05 -0.07 0.28 0.29 0.27 0.27 1.00 -0.80 -0.83 -0.89 -0.89 0.56 0.53 0.51 0.53 0.48 0.51 0.50 0.51 0.48 -0.61 0.93 0.04 0.02
PA_extrinsic_02_T1 -0.03 0.00 0.29 0.26 0.26 0.28 0.63 1.00 -0.80 -0.87 -0.88 0.55 0.53 0.52 0.53 0.48 0.53 0.51 0.51 0.46 -0.61 0.92 0.06 0.04
PA_extrinsic_03_T1 -0.07 -0.04 0.35 0.33 0.29 0.32 0.59 0.61 1.00 -0.88 -0.89 0.55 0.54 0.51 0.54 0.48 0.54 0.51 0.53 0.46 -0.62 0.93 0.05 0.04
PA_introjected_01_T1 0.02 0.09 0.05 0.00 0.01 0.02 0.27 0.32 0.30 1.00 -0.87 0.56 0.53 0.52 0.53 0.48 0.51 0.52 0.51 0.47 -0.62 0.96 0.06 0.04
PA_introjected_02_T1 0.01 0.13 0.02 -0.05 -0.03 0.00 0.21 0.25 0.23 0.69 1.00 0.59 0.55 0.54 0.56 0.50 0.55 0.55 0.53 0.48 -0.64 0.96 0.05 0.04
PA_identified_01_T1 0.11 0.27 -0.19 -0.22 -0.23 -0.20 -0.01 0.01 -0.01 0.25 0.31 1.00 -0.70 -0.71 -0.75 -0.73 -0.73 -0.74 -0.76 -0.68 0.90 -0.59 -0.03 0.00
PA_identified_02_T1 0.08 0.28 -0.30 -0.32 -0.38 -0.35 -0.10 -0.07 -0.07 0.20 0.25 0.61 1.00 -0.68 -0.72 -0.73 -0.73 -0.68 -0.73 -0.63 0.87 -0.57 -0.02 0.01
PA_identified_03_T1 0.24 0.42 -0.27 -0.31 -0.25 -0.23 -0.11 -0.05 -0.08 0.22 0.27 0.55 0.61 1.00 -0.61 -0.64 -0.64 -0.62 -0.69 -0.61 0.82 -0.55 -0.04 -0.02
PA_integrated_01_T1 0.23 0.37 -0.23 -0.25 -0.18 -0.18 -0.05 -0.01 -0.01 0.22 0.29 0.48 0.53 0.74 1.00 -0.59 -0.67 -0.65 -0.72 -0.64 0.84 -0.57 -0.07 -0.05
PA_integrated_02_T1 0.21 0.37 -0.23 -0.28 -0.20 -0.16 -0.07 -0.01 -0.02 0.22 0.27 0.48 0.52 0.71 0.74 1.00 -0.62 -0.60 -0.66 -0.64 0.82 -0.51 -0.02 0.00
PA_integrated_03_T1 0.30 0.44 -0.23 -0.27 -0.19 -0.14 -0.11 -0.04 -0.03 0.13 0.20 0.48 0.51 0.70 0.67 0.71 1.00 -0.73 -0.66 -0.50 0.84 -0.56 -0.02 0.01
PA_intrinsic_01_T1 0.20 0.35 -0.32 -0.35 -0.31 -0.27 -0.13 -0.08 -0.09 0.26 0.31 0.49 0.61 0.72 0.68 0.72 0.64 1.00 -0.62 -0.52 0.82 -0.55 -0.05 -0.03
PA_intrinsic_02_T1 0.21 0.38 -0.30 -0.32 -0.32 -0.25 -0.15 -0.10 -0.07 0.13 0.17 0.45 0.55 0.66 0.60 0.67 0.72 0.73 1.00 -0.52 0.85 -0.55 -0.01 0.01
PA_intrinsic_03_T1 0.20 0.41 -0.27 -0.31 -0.29 -0.20 -0.14 -0.10 -0.09 0.15 0.19 0.47 0.58 0.68 0.62 0.66 0.77 0.74 0.79 1.00 0.76 -0.50 -0.08 -0.06
Autonomous_sumscore 0.24 0.45 -0.31 -0.35 -0.31 -0.27 -0.12 -0.06 -0.06 0.24 0.31 0.68 0.75 0.86 0.82 0.84 0.84 0.86 0.84 0.85 1.00 0.66 0.05 0.02
Controlled_sumscore -0.02 0.05 0.24 0.19 0.19 0.21 0.69 0.71 0.69 0.78 0.72 0.18 0.09 0.11 0.15 0.14 0.06 0.12 0.03 0.04 0.13 1.00 -0.06 -0.04
weartimeAccelerometer_T1 0.15 -0.04 0.02 0.08 0.07 0.06 0.05 0.05 0.04 0.01 -0.06 -0.06 -0.07 -0.01 -0.01 -0.01 -0.01 -0.03 0.00 -0.03 -0.03 0.02 1.00 -0.90
mvpaAccelerometer_percentageWeartime_T1 0.98 0.29 -0.15 -0.18 -0.10 -0.11 -0.07 -0.04 -0.08 0.02 0.03 0.12 0.09 0.24 0.23 0.22 0.30 0.20 0.22 0.20 0.25 -0.02 -0.03 1.00

Motivational regulations network

## TEE TÄNNE PIEFILL? tummempi sama väri tai opacity?

# Was going to do fused graphical lasso, but the items not normal...

# s1 <- regulations.df %>% filter(school == 1) %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.) 
# s2 <- regulations.df %>% filter(school == 2) %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.)
# s3 <- regulations.df %>% filter(school == 3) %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.) 
# s4 <- regulations.df %>% filter(school == 4) %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.)
# s5 <- regulations.df %>% filter(school == 5) %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.)
# 
# network2 <- EstimateGroupNetwork(list("1" = s1,
#                                       "2" = s2,
#                                       "3" = s3,
#                                       "4" = s4,
#                                       "5" = s5),
#                                  n = c(nrow(s1), nrow(s2), nrow(s3), nrow(s4), nrow(s5)))
# 
regulations.df <- df %>% dplyr::select(
  id,
  intervention,
  group,
  school,
  girl,
  PA_amotivation_02_T1,
  PA_amotivation_01_T1,
  PA_amotivation_03_T1,
  PA_amotivation_04_T1,
  PA_extrinsic_01_T1,
  PA_extrinsic_02_T1,
  PA_extrinsic_03_T1,
  PA_introjected_01_T1,
  PA_introjected_02_T1,
  PA_identified_01_T1,
  PA_identified_02_T1,
  PA_identified_03_T1,
  PA_integrated_01_T1, 
  PA_integrated_02_T1,
  PA_integrated_03_T1, 
  PA_intrinsic_01_T1,
  PA_intrinsic_02_T1,
  PA_intrinsic_03_T1)

regulations.df <- regulations.df %>% mutate(
PA_amotivation_02_T1 = ifelse(PA_amotivation_02_T1 == 1, 0, 1),
PA_amotivation_01_T1 = ifelse(PA_amotivation_01_T1 == 1, 0, 1),
PA_amotivation_03_T1 = ifelse(PA_amotivation_03_T1 == 1, 0, 1),
PA_amotivation_04_T1 = ifelse(PA_amotivation_04_T1 == 1, 0, 1),
PA_extrinsic_01_T1 = ifelse(PA_extrinsic_01_T1 == 1, 0, 1),
PA_extrinsic_02_T1 = ifelse(PA_extrinsic_02_T1 == 1, 0, 1),
PA_extrinsic_03_T1 = ifelse(PA_extrinsic_03_T1 == 1, 0, 1),
PA_introjected_01_T1 = ifelse(PA_introjected_01_T1 == 1, 0, 1),
PA_introjected_02_T1 = ifelse(PA_introjected_02_T1 == 1, 0, 1),
PA_identified_01_T1 = ifelse(PA_identified_01_T1 == 1, 0, 1),
PA_identified_02_T1 = ifelse(PA_identified_02_T1 == 1, 0, 1),
PA_identified_03_T1 = ifelse(PA_identified_03_T1 == 1, 0, 1),
PA_integrated_01_T1 = ifelse(PA_integrated_01_T1 == 1, 0, 1),
PA_integrated_02_T1 = ifelse(PA_integrated_02_T1 == 1, 0, 1),
PA_integrated_03_T1 = ifelse(PA_integrated_03_T1 == 1, 0, 1),
PA_intrinsic_01_T1 = ifelse(PA_intrinsic_01_T1 == 1, 0, 1),
PA_intrinsic_02_T1 = ifelse(PA_intrinsic_02_T1 == 1, 0, 1),
PA_intrinsic_03_T1 = ifelse(PA_intrinsic_03_T1 == 1, 0, 1))


### GIRLS AND BOYS

S.boys <- regulations.df %>% filter(girl == "boy") %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.) 
S.girls <- regulations.df %>% filter(girl == "girl") %>% dplyr::select(6:ncol(regulations.df)) # %>% na.omit(.)
nwBoys <- bootnet::estimateNetwork(S.boys, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |===========                                                      |  17%
  |                                                                       
  |==============                                                   |  22%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=========================                                        |  39%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |========================================                         |  61%
  |                                                                       
  |===========================================                      |  67%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |===================================================              |  78%
  |                                                                       
  |======================================================           |  83%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |=============================================================    |  94%
  |                                                                       
  |=================================================================| 100%
nwGirls <- bootnet::estimateNetwork(S.girls, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |===========                                                      |  17%
  |                                                                       
  |==============                                                   |  22%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=========================                                        |  39%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |========================================                         |  61%
  |                                                                       
  |===========================================                      |  67%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |===================================================              |  78%
  |                                                                       
  |======================================================           |  83%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |=============================================================    |  94%
  |                                                                       
  |=================================================================| 100%

data1 <- regulations.df %>% dplyr::select(6:ncol(regulations.df))
names(data1) <- c(paste0(rep("Amoti", 4), 1:4),
                paste0(rep("Extri", 3), 1:3),
                paste0(rep("Intro", 2), 1:2),
                paste0(rep("Ident", 3), 1:3),
                paste0(rep("Integ", 3), 1:3),
                paste0(rep("Intri", 3), 1:3))
nwAll <- bootnet::estimateNetwork(data1, default="IsingFit")
## 
  |                                                                       
  |                                                                 |   0%
  |                                                                       
  |====                                                             |   6%
  |                                                                       
  |=======                                                          |  11%
  |                                                                       
  |===========                                                      |  17%
  |                                                                       
  |==============                                                   |  22%
  |                                                                       
  |==================                                               |  28%
  |                                                                       
  |======================                                           |  33%
  |                                                                       
  |=========================                                        |  39%
  |                                                                       
  |=============================                                    |  44%
  |                                                                       
  |================================                                 |  50%
  |                                                                       
  |====================================                             |  56%
  |                                                                       
  |========================================                         |  61%
  |                                                                       
  |===========================================                      |  67%
  |                                                                       
  |===============================================                  |  72%
  |                                                                       
  |===================================================              |  78%
  |                                                                       
  |======================================================           |  83%
  |                                                                       
  |==========================================================       |  89%
  |                                                                       
  |=============================================================    |  94%
  |                                                                       
  |=================================================================| 100%

# Create means for filling nodes
# girlmeans <- regulations.df %>% group_by(girl) %>% 
#   summarise_at(vars(5:(5+nItems-1)),
#   funs(mean(., na.rm = TRUE))) %>% 
#   filter(girl == "girl") %>% 
#   dplyr::select(-1)
# 
# boymeans <- regulations.df %>% group_by(girl) %>% 
#   summarise_at(vars(5:(5+nItems-1)),
#   funs(mean(., na.rm = TRUE))) %>% 
#   filter(girl == "boy") %>% 
#   dplyr::select(-1)

# Find average layout for comparability and plot graphs next to each other

Layout <- qgraph::averageLayout(nwGirls, nwBoys)


layout(t(1:2))
plot(nwGirls, layout = Layout, label.scale = FALSE, title = "Girls", label.cex = 0.5,
     # pie = girlmeans, 
     color = "skyblue",
     pieBorder = 1)

plot(nwBoys, layout = Layout, label.scale = FALSE, title = "Boys", label.cex = 0.5, 
     # pie = boymeans, 
     color = "skyblue",
     pieBorder = 1)

Session information

Description of the R environment can be found below.

devtools::session_info()
## - Session info ----------------------------------------------------------
##  setting  value                       
##  version  R version 3.6.0 (2019-04-26)
##  os       Windows 10 x64              
##  system   x86_64, mingw32             
##  ui       RTerm                       
##  language (EN)                        
##  collate  Finnish_Finland.1252        
##  ctype    Finnish_Finland.1252        
##  tz       Europe/Helsinki             
##  date     2019-06-30                  
## 
## - Packages --------------------------------------------------------------
##  package               * version    date       lib
##  abind                   1.4-5      2016-07-21 [1]
##  acepack                 1.4.1      2016-10-29 [1]
##  assertthat              0.2.1      2019-03-21 [1]
##  backports               1.1.4      2019-04-10 [1]
##  base64enc               0.1-3      2015-07-28 [1]
##  BayesFactor             0.9.12-4.2 2018-05-19 [1]
##  bayesplot               1.7.0      2019-05-23 [1]
##  BDgraph                 2.59       2019-05-06 [1]
##  BiasedUrn               1.07       2015-12-28 [1]
##  bitops                  1.0-6      2013-08-17 [1]
##  boot                    1.3-22     2019-04-02 [2]
##  bootnet                 1.2.2      2019-05-09 [1]
##  brew                    1.0-6      2011-04-13 [1]
##  bridgesampling          0.6-0      2018-10-21 [1]
##  brms                  * 2.8.0      2019-03-15 [1]
##  brmstools             * 0.5.3      2018-11-16 [1]
##  Brobdingnag             1.2-6      2018-08-13 [1]
##  broom                   0.5.2      2019-04-07 [1]
##  broom.mixed             0.2.4      2019-02-21 [1]
##  broomExtra              0.0.3      2019-05-20 [1]
##  callr                   3.2.0      2019-03-15 [1]
##  candisc                 0.8-0      2017-09-19 [1]
##  car                     3.0-2      2018-08-23 [1]
##  carData                 3.0-2      2018-09-30 [1]
##  caTools                 1.17.1.2   2019-03-06 [1]
##  cellranger              1.1.0      2016-07-27 [1]
##  checkmate               1.9.3      2019-05-03 [1]
##  cli                     1.1.0      2019-03-19 [1]
##  cluster                 2.0.9      2019-05-01 [1]
##  cmprsk                  2.2-7      2014-06-17 [1]
##  coda                    0.19-2     2018-10-08 [1]
##  codetools               0.2-16     2018-12-24 [2]
##  coin                    1.3-0      2019-03-08 [1]
##  colorspace              1.4-1      2019-03-18 [1]
##  colourpicker            1.0        2017-09-27 [1]
##  corpcor                 1.6.9      2017-04-01 [1]
##  corrgram              * 1.13       2018-07-09 [1]
##  cowplot                 0.9.4      2019-01-08 [1]
##  crayon                  1.3.4      2017-09-16 [1]
##  crosstalk               1.0.0      2016-12-21 [1]
##  curl                    3.3        2019-01-10 [1]
##  d3Network               0.5.2.1    2015-01-31 [1]
##  data.table              1.12.2     2019-04-07 [1]
##  data.tree               0.7.8      2018-09-24 [1]
##  DBI                     1.0.0      2018-05-02 [1]
##  dendextend              1.12.0     2019-05-11 [1]
##  DEoptimR                1.0-8      2016-11-19 [1]
##  desc                    1.2.0      2018-05-01 [1]
##  DescTools               0.99.28    2019-03-17 [1]
##  devtools                2.0.2      2019-04-08 [1]
##  DiagrammeR              1.0.1      2019-04-22 [1]
##  digest                  0.6.19     2019-05-20 [1]
##  diptest                 0.75-7     2016-12-05 [1]
##  downloader              0.4        2015-07-09 [1]
##  dplyr                 * 0.8.1      2019-05-14 [1]
##  DT                      0.6        2019-05-09 [1]
##  dygraphs                1.1.1.6    2018-07-11 [1]
##  eigenmodel              1.10       2018-06-03 [1]
##  ellipse                 0.4.1      2018-01-05 [1]
##  ellipsis                0.1.0      2019-02-19 [1]
##  emmeans                 1.3.4      2019-04-21 [1]
##  EMT                     1.1        2013-01-29 [1]
##  Epi                     2.37       2019-05-23 [1]
##  estimability            1.3        2018-02-11 [1]
##  etm                     1.0.4      2018-07-11 [1]
##  evaluate                0.14       2019-05-28 [1]
##  expm                    0.999-4    2019-03-21 [1]
##  ez                      4.4-0      2016-11-02 [1]
##  fdrtool                 1.2.15     2015-07-08 [1]
##  fit.models              0.5-14     2017-04-06 [1]
##  forcats               * 0.4.0      2019-02-17 [1]
##  foreach                 1.4.4      2017-12-12 [1]
##  foreign                 0.8-71     2018-07-20 [1]
##  Formula                 1.2-3      2018-05-03 [1]
##  fs                      1.3.1      2019-05-06 [1]
##  gclus                   1.3.2      2019-01-07 [1]
##  gdata                   2.18.0     2017-06-06 [1]
##  GeneNet                 1.2.13     2015-08-02 [1]
##  generics                0.0.2      2018-11-29 [1]
##  GGally                  1.4.0      2018-05-17 [1]
##  ggcorrplot              0.1.3      2019-05-19 [1]
##  ggExtra                 0.8        2018-04-04 [1]
##  ggm                     2.3        2015-01-21 [1]
##  ggplot2               * 3.1.1      2019-04-07 [1]
##  ggrepel                 0.8.1      2019-05-07 [1]
##  ggridges              * 0.5.1      2018-09-27 [1]
##  ggsignif                0.5.0      2019-02-20 [1]
##  ggstatsplot           * 0.0.10     2019-03-17 [1]
##  glasso                  1.10       2018-07-13 [1]
##  glmnet                  2.0-18     2019-05-20 [1]
##  glue                    1.3.1      2019-03-12 [1]
##  GPArotation             2014.11-1  2014-11-25 [1]
##  gplots                  3.0.1.1    2019-01-27 [1]
##  gridExtra               2.3        2017-09-09 [1]
##  groupedstats            0.0.6      2019-03-20 [1]
##  gtable                  0.3.0      2019-03-25 [1]
##  gtools                  3.8.1      2018-06-26 [1]
##  haven                   2.1.0      2019-02-19 [1]
##  heplots                 1.3-5      2018-04-03 [1]
##  highr                   0.8        2019-03-20 [1]
##  Hmisc                   4.2-0      2019-01-26 [1]
##  hms                     0.4.2      2018-03-10 [1]
##  htmlTable               1.13.1     2019-01-07 [1]
##  htmltools               0.3.6      2017-04-28 [1]
##  htmlwidgets             1.3        2018-09-30 [1]
##  httpuv                  1.5.1      2019-04-05 [1]
##  httr                    1.4.0      2018-12-11 [1]
##  huge                    1.3.2      2019-04-08 [1]
##  igraph                  1.2.4.1    2019-04-22 [1]
##  influenceR              0.1.0      2015-09-03 [1]
##  inline                  0.3.15     2018-05-18 [1]
##  insight                 0.3.0      2019-05-11 [1]
##  IsingFit                0.3.1      2016-09-07 [1]
##  IsingSampler            0.2        2015-03-02 [1]
##  iterators               1.0.10     2018-07-13 [1]
##  jmv                     0.9.6.1    2019-04-22 [1]
##  jmvcore                 0.9.6.4    2019-03-28 [1]
##  jomo                    2.6-8      2019-05-21 [1]
##  jpeg                    0.1-8      2014-01-23 [1]
##  jsonlite                1.6        2018-12-07 [1]
##  KernSmooth              2.23-15    2015-06-29 [2]
##  knitr                 * 1.23       2019-05-18 [1]
##  labeling                0.3        2014-08-23 [1]
##  later                   0.8.0      2019-02-11 [1]
##  lattice                 0.20-38    2018-11-04 [2]
##  latticeExtra            0.6-28     2016-02-09 [1]
##  lavaan                  0.6-3      2018-09-22 [1]
##  lazyeval                0.2.2      2019-03-15 [1]
##  libcoin                 1.0-4      2019-02-28 [1]
##  lme4                    1.1-21     2019-03-05 [1]
##  lmtest                  0.9-37     2019-04-30 [1]
##  longitudinal            1.1.12     2015-07-08 [1]
##  loo                     2.1.0      2019-03-13 [1]
##  lubridate               1.7.4      2018-04-11 [1]
##  magrittr                1.5        2014-11-22 [1]
##  manipulate              1.0.1      2014-12-24 [1]
##  markdown                1.0        2019-06-07 [1]
##  MASS                    7.3-51.4   2019-04-26 [1]
##  Matrix                  1.2-17     2019-03-22 [1]
##  matrixcalc              1.0-3      2012-09-15 [1]
##  MatrixModels            0.4-1      2015-08-22 [1]
##  matrixStats             0.54.0     2018-07-23 [1]
##  MBESS                   4.5.1      2019-05-17 [1]
##  mc2d                    0.1-18     2017-03-06 [1]
##  memoise                 1.1.0      2017-04-21 [1]
##  metafor                 2.1-0      2019-05-14 [1]
##  mgcv                    1.8-28     2019-03-21 [1]
##  mgm                   * 1.2-7      2019-05-09 [1]
##  mice                    3.5.0      2019-05-13 [1]
##  mime                    0.7        2019-06-11 [1]
##  miniUI                  0.1.1.1    2018-05-18 [1]
##  minpack.lm              1.2-1      2016-11-20 [1]
##  minqa                   1.2.4      2014-10-09 [1]
##  mitml                   0.3-7      2019-01-07 [1]
##  mitools                 2.4        2019-04-26 [1]
##  mnormt                  1.5-5      2016-10-15 [1]
##  modelr                  0.1.4      2019-02-18 [1]
##  modeltools              0.2-22     2018-07-16 [1]
##  multcomp                1.4-10     2019-03-05 [1]
##  multcompView            0.1-7      2015-07-31 [1]
##  munsell                 0.5.0      2018-06-12 [1]
##  mvtnorm                 1.0-10     2019-03-05 [1]
##  NetworkComparisonTest * 2.0.1      2016-10-29 [1]
##  NetworkToolbox          1.2.3      2019-01-31 [1]
##  networktools            1.2.1      2019-05-20 [1]
##  nlme                    3.1-140    2019-05-12 [1]
##  nloptr                  1.2.1      2018-10-03 [1]
##  nnet                    7.3-12     2016-02-02 [2]
##  nnls                    1.4        2012-03-19 [1]
##  nortest                 1.0-4      2015-07-30 [1]
##  numDeriv                2016.8-1.1 2019-06-06 [1]
##  openxlsx                4.1.0.1    2019-05-28 [1]
##  pacman                * 0.5.1      2019-03-11 [1]
##  paletteer               0.2.1      2019-02-13 [1]
##  pan                     1.6        2018-06-29 [1]
##  pander                  0.6.3      2018-11-06 [1]
##  papaja                * 0.1.0.9842 2018-11-18 [1]
##  parcor                  0.2-6      2014-09-04 [1]
##  patchwork             * 0.0.1      2018-11-21 [1]
##  pbapply                 1.4-0      2019-02-05 [1]
##  pbivnorm                0.6.0      2015-01-23 [1]
##  pcaPP                   1.9-73     2018-01-14 [1]
##  pillar                  1.4.1      2019-05-28 [1]
##  pkgbuild                1.0.3      2019-03-20 [1]
##  pkgconfig               2.0.2      2018-08-16 [1]
##  pkgload                 1.0.2      2018-10-29 [1]
##  plotrix                 3.7-5      2019-04-07 [1]
##  plyr                    1.8.4      2016-06-08 [1]
##  png                     0.1-7      2013-12-03 [1]
##  polynom                 1.4-0      2019-03-22 [1]
##  ppls                    1.6-1.1    2018-07-20 [1]
##  prettyunits             1.0.2      2015-07-13 [1]
##  processx                3.3.1      2019-05-08 [1]
##  promises                1.0.1      2018-04-13 [1]
##  ps                      1.3.0      2018-12-21 [1]
##  psych                   1.8.12     2019-01-12 [1]
##  purrr                 * 0.3.2      2019-03-15 [1]
##  purrrlyr                0.0.5      2019-03-15 [1]
##  pwr                     1.2-2      2018-03-03 [1]
##  qgraph                  1.6.2      2019-05-09 [1]
##  R.methodsS3             1.7.1      2016-02-16 [1]
##  R.oo                    1.22.0     2018-04-22 [1]
##  R.utils                 2.8.0      2019-02-14 [1]
##  R6                      2.4.0      2019-02-14 [1]
##  RColorBrewer            1.1-2      2014-12-07 [1]
##  rcompanion              2.1.7      2019-04-09 [1]
##  Rcpp                  * 1.0.1      2019-03-17 [1]
##  readr                 * 1.3.1      2018-12-21 [1]
##  readxl                  1.3.1      2019-03-13 [1]
##  registry                0.5-1      2019-03-05 [1]
##  relaimpo                2.2-3      2018-03-10 [1]
##  remotes                 2.0.4      2019-04-10 [1]
##  reshape                 0.8.8      2018-10-23 [1]
##  reshape2                1.4.3      2017-12-11 [1]
##  rgexf                   0.15.3     2015-03-24 [1]
##  rio                     0.5.16     2018-11-26 [1]
##  rjson                   0.2.20     2018-06-08 [1]
##  rlang                   0.3.4      2019-04-07 [1]
##  rmarkdown               1.13       2019-05-22 [1]
##  robust                  0.4-18     2017-04-27 [1]
##  robustbase              0.93-5     2019-05-12 [1]
##  Rook                    1.1-1      2014-10-20 [1]
##  rpart                   4.1-15     2019-04-12 [1]
##  rprojroot               1.3-2      2018-01-03 [1]
##  rrcov                   1.4-7      2018-11-15 [1]
##  rsconnect               0.8.13     2019-01-10 [1]
##  rstan                   2.18.2     2018-11-07 [1]
##  rstantools              1.5.1      2018-08-22 [1]
##  rstudioapi              0.10       2019-03-19 [1]
##  rvest                   0.3.4      2019-05-15 [1]
##  sandwich                2.5-1      2019-04-06 [1]
##  scales                  1.0.0      2018-08-09 [1]
##  SCRT                    1.2.2      2018-03-07 [1]
##  seriation               1.2-3      2018-02-05 [1]
##  sessioninfo             1.1.1      2018-11-05 [1]
##  shiny                   1.3.2      2019-04-22 [1]
##  shinyjs                 1.0        2018-01-08 [1]
##  shinystan               2.5.0      2018-05-01 [1]
##  shinythemes             1.1.2      2018-11-06 [1]
##  sjlabelled              1.0.17     2019-03-10 [1]
##  sjmisc                  2.7.9      2019-03-16 [1]
##  sjstats                 0.17.4     2019-03-15 [1]
##  skimr                   1.0.5      2019-02-25 [1]
##  smacof                  1.10-8     2018-06-14 [1]
##  StanHeaders             2.18.1     2019-01-28 [1]
##  stringi                 1.4.3      2019-03-12 [1]
##  stringr               * 1.4.0      2019-02-10 [1]
##  SuppDists               1.1-9.4    2016-09-23 [1]
##  survey                  3.36       2019-04-27 [1]
##  survival                2.44-1.1   2019-04-01 [1]
##  testthat                2.1.1      2019-04-23 [1]
##  TH.data                 1.0-10     2019-01-21 [1]
##  threejs                 0.3.1      2017-08-13 [1]
##  tibble                * 2.1.3      2019-06-06 [1]
##  tidyr                 * 0.8.3      2019-03-01 [1]
##  tidyselect              0.2.5      2018-10-11 [1]
##  tidyverse             * 1.2.1      2017-11-14 [1]
##  TMB                     1.7.15     2018-11-09 [1]
##  TSP                     1.1-7      2019-05-22 [1]
##  userfriendlyscience     0.7.2      2018-09-24 [1]
##  usethis                 1.5.0      2019-04-07 [1]
##  viridis                 0.5.1      2018-03-29 [1]
##  viridisLite             0.3.0      2018-02-01 [1]
##  visNetwork              2.0.6      2019-03-26 [1]
##  weights                 1.0        2018-10-16 [1]
##  whisker                 0.3-2      2013-04-28 [1]
##  withr                   2.1.2      2018-03-15 [1]
##  wordcloud               2.6        2018-08-24 [1]
##  WRS2                    0.10-0     2018-06-15 [1]
##  xfun                    0.7        2019-05-14 [1]
##  XML                     3.98-1.19  2019-03-06 [1]
##  xml2                    1.2.0      2018-01-24 [1]
##  xtable                  1.8-4      2019-04-21 [1]
##  xts                     0.11-2     2018-11-05 [1]
##  yaml                    2.2.0      2018-07-25 [1]
##  zip                     2.0.2      2019-05-13 [1]
##  zoo                     1.8-6      2019-05-28 [1]
##  source                              
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.6.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  Github (mvuorre/brmstools@dc9c1dd)  
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.6.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.6.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.6.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  Github (jmbh/mgm@029ab66)           
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.6.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  Github (crsh/papaja@2e11aec)        
##  CRAN (R 3.5.0)                      
##  Github (thomasp85/patchwork@fd7958b)
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.2)                      
##  CRAN (R 3.5.0)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.1)                      
##  CRAN (R 3.5.3)                      
##  CRAN (R 3.5.3)                      
## 
## [1] C:/rlibs/3.4.2
## [2] C:/Program Files/R/R-3.6.0/library

pander::pander(sessionInfo())

R version 3.6.0 (2019-04-26)

Platform: x86_64-w64-mingw32/x64 (64-bit)

locale: LC_COLLATE=Finnish_Finland.1252, LC_CTYPE=Finnish_Finland.1252, LC_MONETARY=Finnish_Finland.1252, LC_NUMERIC=C and LC_TIME=Finnish_Finland.1252

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: corrgram(v.1.13), ggridges(v.0.5.1), forcats(v.0.4.0), stringr(v.1.4.0), dplyr(v.0.8.1), purrr(v.0.3.2), readr(v.1.3.1), tidyr(v.0.8.3), tibble(v.2.1.3), tidyverse(v.1.2.1), knitr(v.1.23), patchwork(v.0.0.1), ggstatsplot(v.0.0.10), NetworkComparisonTest(v.2.0.1), brmstools(v.0.5.3), brms(v.2.8.0), Rcpp(v.1.0.1), ggplot2(v.3.1.1), mgm(v.1.2-7), papaja(v.0.1.0.9842) and pacman(v.0.5.1)

loaded via a namespace (and not attached): mitml(v.0.3-7), Hmisc(v.4.2-0), corpcor(v.1.6.9), ps(v.1.3.0), d3Network(v.0.5.2.1), rprojroot(v.1.3-2), smacof(v.1.10-8), foreach(v.1.4.4), lmtest(v.0.9-37), glmnet(v.2.0-18), crayon(v.1.3.4), MASS(v.7.3-51.4), nlme(v.3.1-140), backports(v.1.1.4), metafor(v.2.1-0), ggcorrplot(v.0.1.3), ellipse(v.0.4.1), colourpicker(v.1.0), huge(v.1.3.2), rlang(v.0.3.4), readxl(v.1.3.1), nloptr(v.1.2.1), callr(v.3.2.0), data.tree(v.0.7.8), purrrlyr(v.0.0.5), rjson(v.0.2.20), cmprsk(v.2.2-7), glue(v.1.3.1), loo(v.2.1.0), rstan(v.2.18.2), parallel(v.3.6.0), processx(v.3.3.1), influenceR(v.0.1.0), NetworkToolbox(v.1.2.3), haven(v.2.1.0), tidyselect(v.0.2.5), usethis(v.1.5.0), rio(v.0.5.16), XML(v.3.98-1.19), zoo(v.1.8-6), sjmisc(v.2.7.9), SuppDists(v.1.1-9.4), mc2d(v.0.1-18), nnls(v.1.4), xtable(v.1.8-4), MatrixModels(v.0.4-1), ggm(v.2.3), magrittr(v.1.5), evaluate(v.0.14), Epi(v.2.37), cli(v.1.1.0), rstudioapi(v.0.10), miniUI(v.0.1.1.1), whisker(v.0.3-2), rpart(v.4.1-15), wordcloud(v.2.6), sjlabelled(v.1.0.17), polynom(v.1.4-0), shinystan(v.2.5.0), shiny(v.1.3.2), xfun(v.0.7), groupedstats(v.0.0.6), weights(v.1.0), inline(v.0.3.15), pkgbuild(v.1.0.3), cluster(v.2.0.9), caTools(v.1.17.1.2), bridgesampling(v.0.6-0), TSP(v.1.1-7), WRS2(v.0.10-0), expm(v.0.999-4), Brobdingnag(v.1.2-6), ggrepel(v.0.8.1), threejs(v.0.3.1), dendextend(v.1.12.0), IsingSampler(v.0.2), png(v.0.1-7), reshape(v.0.8.8), ez(v.4.4-0), withr(v.2.1.2), rcompanion(v.2.1.7), bitops(v.1.0-6), plyr(v.1.8.4), cellranger(v.1.1.0), pcaPP(v.1.9-73), survey(v.3.36), coda(v.0.19-2), pillar(v.1.4.1), gplots(v.3.0.1.1), GeneNet(v.1.2.13), multcomp(v.1.4-10), fs(v.1.3.1), BDgraph(v.2.59), paletteer(v.0.2.1), xts(v.0.11-2), pbivnorm(v.0.6.0), ellipsis(v.0.1.0), generics(v.0.0.2), dygraphs(v.1.1.1.6), nortest(v.1.0-4), devtools(v.2.0.2), SCRT(v.1.2.2), tools(v.3.6.0), foreign(v.0.8-71), munsell(v.0.5.0), fit.models(v.0.5-14), emmeans(v.1.3.4), pkgload(v.1.0.2), compiler(v.3.6.0), abind(v.1.4-5), httpuv(v.1.5.1), sessioninfo(v.1.1.1), manipulate(v.1.0.1), DescTools(v.0.99.28), ggExtra(v.0.8), gridExtra(v.2.3), lattice(v.0.20-38), longitudinal(v.1.1.12), visNetwork(v.2.0.6), later(v.0.8.0), pan(v.1.6), jomo(v.2.6-8), jsonlite(v.1.6), GGally(v.1.4.0), scales(v.1.0.0), pbapply(v.1.4-0), carData(v.3.0-2), estimability(v.1.3), lazyeval(v.0.2.2), promises(v.1.0.1), car(v.3.0-2), latticeExtra(v.0.6-28), R.utils(v.2.8.0), brew(v.1.0-6), checkmate(v.1.9.3), rmarkdown(v.1.13), openxlsx(v.4.1.0.1), sandwich(v.2.5-1), cowplot(v.0.9.4), pander(v.0.6.3), downloader(v.0.4), igraph(v.1.2.4.1), gclus(v.1.3.2), userfriendlyscience(v.0.7.2), Rook(v.1.1-1), numDeriv(v.2016.8-1.1), plotrix(v.3.7-5), survival(v.2.44-1.1), rsconnect(v.0.8.13), yaml(v.2.2.0), jmvcore(v.0.9.6.4), bayesplot(v.1.7.0), memoise(v.1.1.0), htmltools(v.0.3.6), minpack.lm(v.1.2-1), rstantools(v.1.5.1), networktools(v.1.2.1), lavaan(v.0.6-3), candisc(v.0.8-0), modeltools(v.0.2-22), seriation(v.1.2-3), IsingFit(v.0.3.1), viridisLite(v.0.3.0), digest(v.0.6.19), rrcov(v.1.4-7), assertthat(v.0.2.1), mime(v.0.7), registry(v.0.5-1), BiasedUrn(v.1.07), remotes(v.2.0.4), data.table(v.1.12.2), R.oo(v.1.22.0), DiagrammeR(v.1.0.1), labeling(v.0.3), shinythemes(v.1.1.2), splines(v.3.6.0), Formula(v.1.2-3), broom(v.0.5.2), hms(v.0.4.2), modelr(v.0.1.4), colorspace(v.1.4-1), base64enc(v.0.1-3), mnormt(v.1.5-5), bootnet(v.1.2.2), libcoin(v.1.0-4), broom.mixed(v.0.2.4), nnet(v.7.3-12), coin(v.1.3-0), mvtnorm(v.1.0-10), matrixcalc(v.1.0-3), multcompView(v.0.1-7), relaimpo(v.2.2-3), R6(v.2.4.0), grid(v.3.6.0), ppls(v.1.6-1.1), acepack(v.1.4.1), EMT(v.1.1), StanHeaders(v.2.18.1), zip(v.2.0.2), BayesFactor(v.0.9.12-4.2), curl(v.3.3), ggsignif(v.0.5.0), gdata(v.2.18.0), minqa(v.1.2.4), testthat(v.2.1.1), broomExtra(v.0.0.3), robustbase(v.0.93-5), qgraph(v.1.6.2), Matrix(v.1.2-17), skimr(v.1.0.5), desc(v.1.2.0), glasso(v.1.10), TH.data(v.1.0-10), RColorBrewer(v.1.1-2), iterators(v.1.0.10), TMB(v.1.7.15), htmlwidgets(v.1.3), markdown(v.1.0), crosstalk(v.1.0.0), GPArotation(v.2014.11-1), MBESS(v.4.5.1), rvest(v.0.3.4), jmv(v.0.9.6.1), mgcv(v.1.8-28), insight(v.0.3.0), htmlTable(v.1.13.1), robust(v.0.4-18), codetools(v.0.2-16), matrixStats(v.0.54.0), lubridate(v.1.7.4), gtools(v.3.8.1), prettyunits(v.1.0.2), psych(v.1.8.12), R.methodsS3(v.1.7.1), DBI(v.1.0.0), gtable(v.0.3.0), stats4(v.3.6.0), etm(v.1.0.4), KernSmooth(v.2.23-15), httr(v.1.4.0), eigenmodel(v.1.10), highr(v.0.8), stringi(v.1.4.3), reshape2(v.1.4.3), diptest(v.0.75-7), viridis(v.0.5.1), fdrtool(v.1.2.15), mice(v.3.5.0), DT(v.0.6), xml2(v.1.2.0), boot(v.1.3-22), heplots(v.1.3-5), shinyjs(v.1.0), lme4(v.1.1-21), pwr(v.1.2-2), parcor(v.0.2-6), DEoptimR(v.1.0-8), sjstats(v.0.17.4), jpeg(v.0.1-8), rgexf(v.0.15.3), pkgconfig(v.2.0.2) and mitools(v.2.4)